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aMAP5, UMR 8145, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
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Abstract

This note presents rates of convergence for the pointwise mean squared error in the deconvolution problem
with estimated characteristic function of the errors.

Résumé

Déconvolution ponctuelle avec distribution de l’erreur inconnue. Cette note présente les vitesses
de convergence pour le risque quadratique ponctuel dans le problème de déconvolution avec fonction carac-
téristique des erreurs estimée.

1. Introduction

Let us consider the following model:

Yj = Xj + εj j = 1, . . . , n (1)

where (Xj)1≤j≤n and (εj)1≤j≤n are independent sequences of i.i.d. variables. We denote by f the density
of Xj and by fε the density of εj . The aim is to estimate f when only Y1, . . . , Yn are observed. Contrary
to the classical convolution model, we do not assume that the density of the error is known, but that we
additionally observe ε−1, . . . , ε−M , a noise sample with distribution fε, independent of (Y1, . . . , Yn). Note
that the availability of two distinct samples makes the problem identifiable.

Although there exists a huge literature concerning the estimation of f when fε is known, this problem
without the knowledge of fε has been less studied. One can cite Efromovich (1997) in a context of circular
data and Diggle and Hall (1993) who examine the case M ≥ n. Neumann (1997) gives an upper bound and
a lower bound for the integrated risk in the case where both f and fε are ordinary smooth, and Johannes
(2009) gives upper bounds for the integrated risk in a larger context of regularities. An other practical issue
to the considered problem is the study of the model of repeated observations, see Delaigle et al (2008).

The contribution of this note is to provide a class of estimators and compute upper bounds for their
pointwise rates of convergence depending on M and n in a general setting.

Notations. For z a complex number, z̄ denotes its conjugate and |z| its modulus. For a function t : R 7→ R
belonging to L1 ∩ L2(R), we denote by ‖t‖ the L2 norm of t and by ‖t‖1 the L1 norm of t. The Fourier
transform t∗ of t is defined by t∗(u) =

∫
e−ixut(x)dx.

2. Estimation procedure

It easily follows from Model (1) and independence assumptions that, if fY denotes the common density
of the Yj ’s, then fY = f ∗ fε and thus f∗Y = f∗f∗ε . Therefore, under the classical assumption:
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(A1) ∀x ∈ R, f∗ε (x) 6= 0,

the equality f∗ = f∗Y /f
∗
ε yields an estimator of f∗ by considering the following estimate of f∗Y : f̂∗Y (u) =

n−1
∑n
j=1 e

−iuYj . Indeed, if f∗ε is known, we can use the estimate of f∗: f̂∗Y /f
∗
ε . Then, we should use inverse

Fourier transform to get an estimate of f . As 1/f∗ε is in general not integrable (think of a Gaussian density
for instance), this inverse Fourier transform does not exist, and a cutoff is used. The final estimator for
known fε can thus be written: (2π)−1

∫
|u|≤πm e

iuxf̂∗Y (u)/f∗ε (u)du. Here m is a real positive bandwidth
parameter. This estimator is classical in the sense that it corresponds both to a kernel estimator built with
the sinc kernel (see Butucea (2004)) or to a projection type estimator as in Comte et al. (2006).

Now, f∗ε is unknown and we have to estimate it. Therefore, we use the preliminary sample and we
define the natural estimator of f∗ε : f̂∗ε (x) = 1

M

∑M
j=1 e

−ixε−j . Next, we introduce as in Neumann (1997) the
truncated estimator:

1
f̃∗ε (x)

=
1{|f̂∗ε (x)|≥M−1/2}

f̂∗ε (x)
=

1

f̂∗ε (x)
if |f̂∗ε (x)| ≥M−1/2 and

1
f̃∗ε (x)

= 0 otherwise.

Then our estimator is

f̂m(x) =
1

2π

∫ πm

−πm
eixu

f̂∗Y (u)
f̃∗ε (u)

du. (2)

3. Study of the pointwise mean squared error

We introduce the notations

∆(m) =
1

2π

∫ πm

−πm
|f∗ε (u)|−2du, ∆0(m) =

1
2π

(∫ πm

−πm
|f∗ε (u)|−1du

)2

, ∆0
f (m) =

1
2π

(∫ πm

−πm

|f∗(u)|
|f∗ε (u)|

du

)2

.

Proposition 3.1. Consider Model (1) under (A1), then there exist constants C,C ′ > 0 such that for all
positive real m and all positive integers n,M ,

E[(f̂m(x)− f(x))2] ≤ 2

(
1

2π

∫
|t|≥πm

|f∗(t)|dt

)2

+
C

n
min(‖f∗Y ‖1∆(m),∆0(m)) + C ′

∆0
f (m)
M

.

Note that the result of Proposition 3.1 holds for any fixed and independent integers M and n.
Assumption (A1) is generally strengthened by the following description of the rate of decrease of f∗ε :

(A2) There exist s ≥ 0, b > 0, γ ∈ R (γ > 0 if s = 0) and k0, k1 > 0 such that

∀x ∈ R k0(x2 + 1)−γ/2 exp(−b|x|s) ≤ |f∗ε (x)| ≤ k1(x2 + 1)−γ/2 exp(−b|x|s).

Moreover, the density function f to estimate generally belongs to the following type of smoothness spaces:

Aδ,r,a(l) = {f density on R and
∫
|f∗(x)|2(x2 + 1)δ exp(2a|x|r)dx ≤ l} (3)

with r ≥ 0, a > 0, δ ∈ R and δ > 1/2 if r = 0, l > 0.
When r > 0 (respectively s > 0), the function f (respectively fε) is known as supersmooth, and as ordinary
smooth otherwise. The spaces of ordinary smooth functions correspond to classic Sobolev classes, while
supersmooth functions are infinitely differentiable. For example normal (r = 2) and Cauchy (r = 1)
densities are supersmooth.

Corollary 3.2. If f∗ε satisfies (A2) and if f ∈ Aδ,r,a(l), the rates of convergence for the Mean Squared
Error E[(f̂m0(x)− f(x))2] are given in Table 1 (which also contains the chosen m0).

2



Indeed, if f ∈ Aδ,r,a(l), the bias term can be bounded in the following way

2

(
1

2π

∫
|t|≥πm

|f∗(t)|dt

)2

≤ K1(πm)−2δ+1−r exp(−2a(πm)r).

and straightforward computation gives ∆(m) ≤ K2(πm)2γ+1−s exp(2b(πm)s) and ∆0(m) ≤ K3(πm)2γ+2−2s

exp(2b(πm)s); lastly, denoting by v = 2γ + 1− s, we have

∆0
f (m)K−1

4 ≤ (πm)(2γ+1−2δ)+(log(m))1δ=γ+1/21{r=s=0} + (πm)v−max(2δ,s−1) exp(2b(πm)s)1{s>r}
+(πm)v−2δ exp(2(b− a)(πm)s)1{r=s,b≥a} + 1{r>s}∪{r=s,b<a}

where K1,K2,K3,K4 are positive constants. Then the rates of Table 1 are obtained by choosing adequate
m0 depending on n, M and the smoothness indices.

s = 0 s > 0

r = 0 n−
2δ−1
2δ+2γ +M−[min(1, 2δ−1

2γ )](logM)1δ=γ+1/2 (log n)−(2δ−1)/s + (logM)−(2δ−1)/s

for m0 = min(n1/(2δ+2γ),M1/max(2γ,2δ−1)) for m0 = π−1(log(min(n,M))/(2b+ 1))1/s

r > 0
(log n)(2γ+1)/r

n
+

1
M

for See comment below.

m0 = π−1[(log(n)− (1 + 2(δ + γ)/r) log log(n))/(2a)]1/r,

Table 1: Rates of convergence for the MSE if f∗ε satisfies (A2) and f ∈ Aδ,r,a(l).

For the case (r > 0, s > 0), the rules for the compromise between supersmooth terms in both squared
bias and variance are given in Lacour (2006) in the case of a known noise. The computations are similar for
the present study. As this case is very tedious to write and contains several sub-cases, we omit the precise
rates: it is sufficient to know that they decrease faster than any logarithmic functions, both in M and n.

The rates in term of n are known to be the optimal one for the deconvolution with known error (see
Fan (1991) and Butucea (2004)). They are recovered as soon as M ≥ n. Extending the proof of Neumann
(1997), we can prove the optimality of the rate M−1 in the cases where f is smoother than fε and r ≤ 1.
Note that even for M ≥ n, automatic selection of m should be performed in the spirit of Butucea and Comte
(2009), but none of the quoted works proves theoretical results about it.

Notice that Corollary 3.2 has not only a theoretical importance but also provides an answer to practical
problems of noised observations by studying in detail the effect of preliminary measurements.

4. Proof of Proposition 3.1

First, let us denote fm(x) = (2π)−1
∫ πm
−πm e

ixuf∗(u)du and R(x) =
(

(f̃∗ε (x))−1 − (f∗ε (x))−1
)
. Then

E[(f̂m(x)− f(x))2] ≤ 2(fm(x)− f(x))2 + 2E[(f̂m(x)− fm(x))2]

≤ 2(fm(x)− f(x))2 + 4Var

(
1

2π

∫ πm

−πm
eixu

f̂∗Y (u)
f∗ε (−u)

du

)
+ 4E

[(
1

2π

∫ πm

−πm
eixuf̂∗Y (u)R(u)du

)2
]

(4)

Since (f − fm)(x) = (1/2π)(f∗ − f∗m)∗(−x), we can bound the bias term in the following way

(fm(x)− f(x))2 ≤

(
1

2π

∫
|t|≥πm

|f∗(t)|dt

)2

. (5)
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The second term of the right-hand-side of (4) is the variance term when f∗ε is known and has already
been studied: it follows from Butucea and Comte (2009) that

Var

(
1

2π

∫ πm

−πm
eixu

f̂∗Y (u)
f∗ε (−u)

du

)
≤ 1

2πn
min(‖f∗Y ‖1∆(m),∆0(m)). (6)

For the last remaining term in the right-hand-side of (4), we bound it by

2E

[(
1

2π

∫ πm

−πm
eixu(f̂∗Y (u)− f∗Y (u))R(u)du

)2
]

+ 2E

[(
1

2π

∫ πm

−πm
eixuf∗Y (u)R(u)du

)2
]

:= 2T1 + 2T2.

Neumann (1997) proved that there exists a positive constant C1 such that

E|[R(u)|2] = E

(∣∣∣∣ 1
f̃∗ε (u)

− 1
f∗ε (u)

∣∣∣∣2
)
≤ C1 min

(
1

|f∗ε (u)|2
,

1
M |f∗ε (u)|4

)
.

Then we find

T1 =
1

4π2

∫∫
eix(u−v)Cov(f̂∗Y (u), f̂∗Y (v))E(R(u)R̄(v))dudv

≤ 1
4π2n

∫∫
|f∗Y (u− v)|

√
E(|R(u)|2)E(|R(v)|2)dudv ≤ C1

4π2n

∫∫
|f∗Y (u− v)|
|f∗ε (u)f∗ε (v)|

dudv.

This term is clearly bounded by C1(2πn)−1∆0(m). Moreover writing it as

C1

4π2n

∫∫ √
|f∗Y (u− v)|
|f∗ε (u)|

√
|f∗Y (u− v)|
|f∗ε (v)|

dudv

and using the Schwarz Inequality, and the Fubini Theorem yields the bound C1(2πn)−1‖f∗Y ‖1∆(m). There-
fore

E

[(
1

2π

∫ πm

−πm
eixu(f̂∗Y (u)− f∗Y (u))R(u)du

)2
]
≤ C1

2πn
min(‖f∗Y ‖1∆(m),∆0(m)), (7)

and thus it has the same order as the usual variance term. Lastly,

T2 ≤ 1
4π2

∫∫
|u|,|v|≤πm

|f∗Y (u)f∗Y (v)|
√

E(|R(u)|2)E(|R(v)|2)dudv

≤ 1
4π2

(∫ πm

−πm
|f∗Y (u)|

√
E(|R(u)|2)du

)2

≤ C1

4π2M

(∫ πm

−πm

|f∗Y (u)|
|f∗ε (u)|2

du

)2

= C1

∆0
f (m)

2πM
. (8)

Inserting the bounds (5) to (8) in Inequality (4), we obtain the result of Proposition 3.1. �
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