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Chapter 1

Preamble

This dissertation presents the work I have done between 2007 and 2014, that is to say at the
end of my PhD at University Paris Descartes and mostly at University Paris-Sud as a “maître
de conférences”. The detail is in the corresponding papers. In addition to the content of the
articles, here are some more general reflections.

1.1 Risk and approximation

1.1.1 Loss function

All of this work is placed in the context of nonparametric statistics. Essentially, we consider
the following issue: we want to estimate a function f from observations Z1, . . . , Zn identically
distributed with law PZ depending on f . The aim will be to provide a random function f̂
depending only on the observations and approaching as close as possible to f . To calculate the
performance of the estimator, the question of the distance between functions arises. The distances
Lp are the most natural, with p “ 1, 2 or 8: then one is interested in }f ´ f̂}p. The distance
L1 may seem more appropriate for densities, distance L8 being more sensitive to “bumps” and
distance L2 a compromise between the two. In my work, I have always used the distance L2,
this choice often being guided by technical considerations more than anything else (especially
when working with Fourier transforms). Nevertheless, it remains a quite reasonable choice and
probably the most common in nonparametric statistics. I have also sometimes considered the
pointwise distance |fpx0q´ f̂px0q|, which is closely linked to the L8 norm. When f is a density or
a distribution function, and we then look for estimating a probability distribution, the question
arises of working with distances between the intrinsic probability measures (i.e. not depending
on the dominating measure) as the Kullback divergence or the Hellinger distance. Here, in all
considered applications, the dominating measure will always be the Lebesgue measure naturally.
So we only consider distance between functions rather than distributions.

1.1.2 Approximation spaces

Here we present a lot of oracle inequalities, that is to say comparisons between estimators. But
secondly, to assess the optimality of our results, we consider the minimax framework. The
estimate always requires an approximation: projection of f on a finite dimensional vector space
or smoothing kernel. To control this approximation, I have always assumed that my target
function belongs either to a Besov space or to a Sobolev space. These spaces are now well known
of statisticians in the univariate framework. The interest of Besov spaces Bα

p,q is that they can
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describe both very regular functions, but also those with peaks and spatial inhomogeneity. We
retrieve Sobolev spaces by taking p “ q “ 2 and Hölder spaces if p “ q “ 8. Thus, the space
Bα

2,8 contains the Sobolev space Wα
2 (actually all Besov spaces Bα

2,q for q ě 1). It also contains
Bα
p,8 for any p ě 2 if the domain is a bounded open set of Rn (see Amann, 2000). These inclusions

(or embeddings) are the reason why we we often consider this space Bα
2,8. In the multivariate

framework, we must be rigorous enough to define anisotropic spaces (see Section 3.1.2 for the
generalization of Sobolev spaces). Besov spaces are well defined in this context and previous
embeddings remain true even in the anisotropic case (see Triebel, 2006).

However issues of smoothness spaces and estimating distance cannot be separated. Indeed,
let us consider a function f P Bα

p,8 to be estimated with a Lq loss (1 ď q ď 8), then we
distinguish two cases:

‚ If p ě q, f has a classical smoothness, typically with wavelet coefficients not too large,
but many are non-negligible. This case is often called homogeneous. Then f is linearly
approximable with Lq norm, the minimax rate of convergence with Lq loss is n´α{p2α`1q

and it is achieved by linear estimators.

‚ If p ă q, it is the inhomogeneous case. We can not approximate f with regular bases. If α
is large enough (α ą pq{p´1q{2), the minimax rate is still n´α{p2α`1q, otherwise it becomes
like plog n{nqβpα,p,qq.

In the second part of this manuscript, we simply study the homogeneous case (p “ q “ 2), while
the inhomogeneous case is detailed in the first part.

1.2 Adaptive methods

This manuscript is divided into two parts, according to the two areas of research that I have
explored during my short life as a researcher. The first part deals with the conditional density
estimation, and the second one with noisy models. Common to these two parts is the adaptive
nonparametric estimation. I have used two main methods for adaptive estimation: Birgé-Massart
model selection, and Goldenshluger-Lepski method. Both are non-asymptotic (at least in theory).

1.2.1 Birgé-Massart method

Let us recall briefly the principle of model selection, the reference on the subject is of course
Massart (2007). Given a family of estimators pf̂mqmPM, the issue is the choice of m. It is
assumed that the target function f can be written as a minimizer of a contrast function f “
arg mint Epγpt, Zqq “ arg mint Pγptq, which naturally provides estimators by minimizing the
empirical risk:

f̂m “ argmin
tPSm

γnptq “ argmin
tPSm

1

n

n
ÿ

i“1

γpt, Ziq

where γn is the empirical contrast and spaces Sm are called models. In this framework, by
considering the loss associated with the contrast (typically the L2 loss for least squares, or
Kullback divergence for a maximum likelihood estimator) the optimal m (or oracle) is the one
which minimizes Pγpf̂mq. Then one might be tempted to minimize the empirical equivalent
of this quantity, but γnpf̂mq is a biased estimator, that needs to be corrected. The idea is to
introduce a penalty function pen and to set

m̂ “ argmin
mPM

!

γnpf̂mq ` penpmq
)

.
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Here the penalty may depend on the “dimension” of each model and the “complexity” of the
collection. This method allows to prove non-asymptotic oracle inequalities. It has now been
extensively studied, both practically and theoretically, in many models, e.g. in change detection
(Lebarbier, 2005), spatial statistics (Verzelen, 2010), classification (Maugis and Michel, 2011),
or geometrical inference (Caillerie and Michel, 2011). Due to its practical and theoretical per-
formance, we have extensively used it here. However, it cannot really apply outside the scope
of the estimation by contrast minimization, controlled by the associated loss function. Thus, it
is not suitable to control the pointwise risk, at a given point. Laurent et al. (2008) proposed an
adaptation of the method of Birgé-Massart for linear functional. This is actually very similar to
the method of Goldenshluger-Lepski described below, at least in the univariate case. To estimate
T pfq, a linear functional of f , it consists in replacing the term γnpf̂mq, which estimated (up to a
constant) the bias in the model selection, with the term supm1ěmpT pf̂mq ´ T pf̂m1q ´Hpm,m

1qq

where H is a compensation term to be specified. Here we find the idea of comparing estimators
two by two, already present in Lepski’s method. A problem arises when addressing multivari-
ate functions. To manage the anisotropy of f , we need to use indices m “ pm1,m2q in two
dimensions. The notion of order between m and m1 is not clear to define, and it is difficult to
simultaneously put in order the bias and the variance. By the way, as noticed by Kerkyacharian
et al. (2001), this lack of natural ordering is one of the reasons that make adaptive methods dif-
ficult to implement in an anisotropic framework. Although the model selection can work in this
framework (in regular cases, inequality dimpSm ` Sm1q ď dimpSmq ` dimpSm1q allows to easily
manage the complexity of anisotropic models), it is nevertheless limited to some estimators and
associated risks. The handling of the anisotropy is one of the motivations for the introduction
of the Goldenshluger-Lepski method.

1.2.2 Goldenshluger-Lepski method

While the model selection is provided to select among contrast minimization estimators, the
Goldenshluger-Lepski method is designed for kernel estimators. It is based on pairwise com-
parison of estimators, which is perhaps its main drawback (for its practical application). These
authors first develop their methodology in white noise model (Goldenshluger and Lepski, 2008,
2009), next for density estimation (Goldenshluger and Lepski, 2011) and then for various models
(Goldenshluger and Lepski, 2013). Their initial objective was to provide an adaptive procedure
for multivariate and anisotropic estimation. They use it to give minimax rates of convergence
in a very general framework (see Goldenshluger and Lepski, 2014). For this purpose, they have
established oracle inequalities to ensure that the final estimator is almost as efficient as the best
one in the collection. This methodology has next been applied in concrete examples: see Doumic
et al. (2012) for transport-fragmentation equations, or [L16] for relative density in two-sample
problems (this paper will not be mentioned in this dissertation).

This method proposes a data-driven choice of h to select an estimator among a collection
pf̂hqhPH. To sum up, the selected ĥ is chosen as a minimizer of Aphq ` V phq with

Aphq “ suptr}f̂h1 ´ f̂h,h1}
2 ´ V ph1qs`, h

1 P Hu

where x` denotes the positive part maxpx, 0q and where f̂h,h1 are oversmoothed auxiliary es-
timators and V phq is a penalty term to be suitably chosen. Heuristically, the term Aphq has
the same order as suptr}Epf̂h,h1q ´ Epf̂h1q}2, h1 P Hu because the distance to the expectation is
canceled by V ph1q. And, if h1 tends to 0, }Epf̂h,h1q ´Epf̂h1q} tends to the bias }Epf̂hq ´ f}. Then
the final choice ĥ “ arg minhAphq ` V phq mimics a bias-variance trade-off. Other heuristics are
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presented in [L17]. Although this method is initially intended for selecting kernel estimators, we
have also extended it to projection estimators, see Section 2.4.3.

1.2.3 Concentration inequalities

Concentration inequalities are deeply involved in almost all the proofs of this dissertation. Some-
times, a simple Bernstein inequality is enough, but we have generally used Talagrand inequality.
Thus the main probabilistic tool for the sequel is the following result:

Lemma 1. [Talagrand’s Inequality, adapted from Klein and Rio (2005)] Let X1, . . . , Xn be a
sequence of i.i.d. variables and νptq “ n´1

řn
i“1rgtpXiq´EpgtpXiqqs for t belonging to a countable

set of functions F . Assume that for all t P F }gt}8 ď b and VarpgtpX1qq ď v. Denote H “

EpsuptPF νptqq. Then, for any ε ą 0, for H 1 ě H,

Ppsup
tPF

νptq ě p1` εqH 1q ď max

ˆ

exp

ˆ

´
ε2

6

nH 12

v

˙

, exp

ˆ

´
minpε, 1qε

24

nH 1

b

˙˙

,

Ppsup
tPF

νptq ď H ´ εH 1q ď max

ˆ

exp

ˆ

´
ε2

6

nH 12

v

˙

, exp

ˆ

´
minpε, 1qε

24

nH 1

b

˙˙

.

For dealing with dependent variables we also use the works of Adamczak (2008) and Paulin
(2014).

1.3 Abstract

This dissertation is divided into two parts. The first part deals with the estimation of a con-
ditional density. We first present the motivation and the bibliographic context of our study.
Then our main estimator is introduced: it is a minimizer of an original empirical contrast
γnptq “ n´1

řn
i“1r

ş

t2pXi, yqdy´ 2tpXi, Yiqs. The minimization is done on piecewise polynomials
approximation spaces, and we detail how the minimization is possible in Section 2.2. Next we
present an adaptive Birgé-Massart model selection procedure which leads to oracle inequalities
for L2-risk. The rates of convergence are studied for the problem of estimating the conditional
density, first for homogeneous regularity, next for inhomogeneous one. The latter requires the use
of a specific collection of models based on dyadic partitions. Then, we study local adaptation for
the estimation of the conditional density at a given point. In this case the selection is done via
Goldenshluger-Lepski method, and we also study a kernel estimator. The next section is devoted
to some generalizations of the previous results: we first extend to dependent data and censored
data, and then to the estimation of a conditional cumulative distribution. In this case, interesting
rates of convergence appear which combine parametric and nonparametric rates. To complete
this part, we give some considerations on the penalty calibration issue. In particular we provide
a minimal penalty for the Goldenshluger-Lepski method in the case of density estimation. We
conclude with some prospects.

In the second part, we present our works in the framework of deconvolution and hidden
Markov chains. Deconvolution models deal with the density f of a signalX which is contaminated
by a noise ε, so that only the variable X`ε is observed. First, we study the case of a multivariate
signal. In this case we give lower and upper bounds for the rates of convergence: these are very
complex, depending on the smoothness of both the signal and the noise. We also introduce an
adaptive estimator which enjoys good theoretical (oracle inequality) and practical properties.
Then we come back to the univariate background to investigate the case of an unknown noise
distribution. We assume that an additional sample of the pure noise is available: ε´1, . . . , ε´M ,
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and we give upper bounds on the rates of convergence, depending both on M and n the size
of the initial sample of Y . Adaptation is performed via Birgé-Massart model selection with a
specific random penalty. This section ends with a work on pointwise estimation for Lévy process,
this topic being very close to the deconvolution topic. Section 3.2 details a goodness-of-fit test
procedure for a deconvolution problem on the sphere. Motivated by astrophysical applications,
we are interested in testing uniformity of noisy spherical data. Again, the separation rates
depend on the noise smoothness, and we provide both lower and upper bounds for these rates.
We implement our procedure and try it on both simulated and real data. Finally, we investigate
the case of a Markovian signal X with finite state space when only indirect observations Y are
available. Using the model selection technique, we give nonparametric estimators of the density
of Y given X “ k for this hard problem (nothing of X is assumed to be known but the cardinal of
the hidden state space). They are proved to be adaptive optimal and computationally efficient,
using a preliminary spectral estimator to initialize our algorithm.
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Chapter 2

Estimation of a conditional distribution

2.1 Introduction

The first main theme of my research is the estimation of a conditional density. This problem
can be stated in this way. Let pX,Y q be a pair of random variables, and we assume that the
conditional distribution of Y given X admits a density, denoted by s in this document:

spx, yqdy “ PpY P dy|X “ xq.

The goal is to find the conditional density from a sample with the same distribution as pX,Y q:
pX1, Y1q, . . . , pXn, Ynq.

2.1.1 Motivation

This question may arise as soon as we observe a (possibly multidimensional) response Y asso-
ciated with a (possibly multidimensional) covariate X. Of course this issue is extremely large.
We often study the regression function EpY |X “ xq. But this information is restrictive, and the
entire distribution is more informative than the mean. The most typical case is the case of a
bimodal distribution:

y

spx0, yq

|

EpY |X “ x0q

This figure shows that the knowledge of EpY |X “ x0q does not give enough information about
the law of Y given X “ x0. Therefore the problem of estimating the conditional distribution is
richer than the one of estimating a regression function, and is found in various application fields.
Let us give here some examples:

• in meteorology: prediction of the electrical power produced by a wind turbine as a function
of wind speed (Jeon and Taylor, 2012);

• insurance: conditional density of claim severity given claim count (Resti et al., 2012), or
premium given credit score (Efromovich, 2010b);
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• in medical studies: spinal bone mineral density given the age (Takeuchi et al., 2009),
survival in days of cancer patients given months from diagnosis and age (Hall et al., 2004);

• in geology: waiting time between the starts of successive eruptions et the duration of the
subsequent eruption for a geyser (Azzalini and Bowman, 1990)

• in astronomy: distribution of redshifts given spectroscopic measurements (Holmes et al.,
2012).

Moreover, even within the statistical field, we must mention the ABC methods (Approximate
Bayesian Computation): estimating the conditional distribution of θ given observations is really
at the heart of the method, see Section 2.4. Moreover, the problem of estimating the conditional
probability density is related to the estimation of the transition of a Markov chain with continuous
state space: just consider pX,Y q “ pXi, Xi`1q. More generally, making inference for a stochastic
process pXtqtě0 from discrete observations requires studying the law of Xt`∆ given Xt “ x (for
example to maximize the likelihood

ś

s∆pXi∆|Xpi´1q∆q, see Aït-Sahalia (2001)).
All these considerations make the estimation of conditional density a subject of study which

should not be left behind. Note that the problem of conditional density estimate is at the
intersection of density estimation and regression. Since the conditional density spx, .q is the
density of Y given X “ x, we face a problem of density estimation in the y-direction, and the
estimation of the regression function EpY |X “ xq in the x-direction. From a theoretical point of
view, the conditional density estimation is thus a mixing of the two main models considered in
nonparametric estimation.

2.1.2 State of the art

The most natural way to estimate a conditional density is to express it as a ratio of the density
of the couple pX,Y q and the density of X. It is this method that was used by Rosenblatt (1969)
and in the works of the 90s. Using a kernel K and a couple of bandwidths ph1, h2q, we can
estimate s by

ŝpx, yq “

řn
i“1Kh1pXi ´ xqKh2pYi ´ yq

řn
i“1Kh1pXi ´ xq

(1)

where Khpxq “ Kpx{hq{h. We can obviously choose two different kernels rather than one.
This estimator can also be seen as the Nadaraya-Watson estimator applied to data Xi and
Zipyq “ Kh2pYi ´ yq. This can be understood by noticing that if K “ 1r´1,1s{2, the regression
function verifies

EpZipyq|Xi “ xq “
1

2h2
Ep1|Yi´y|ďh2

|Xi “ xq “
F py ` h2|xq ´ F py ´ h2|xq

2h2
« spx, yq.

This estimator is also proposed by Roussas (1969) in the framework of Markov chains and used
in the context of stationary mixing processes pXtq, where one studies the conditional density of
pXip`1 , . . . , Ximq given pXi1 , . . . , Xipq (Masry, 1989; Cai, 1991). Starting from this standard esti-
mator, several improvements have been suggested. Noting that there is a bias in the estimation
of the conditional mean, that is to say the regression function r “

ş

ysp., yqdy, Hyndman et al.
(1996) use a preliminary estimator r̂. Then, in (1), Yi is replaced by Y ˚i pxq “ r̂pxq`pYi´ r̂pXiqq.
This is also what is used in Beaumont et al. (2002) or Blum (2010) with different estimators of
r. Fan et al. (1996) suggest an approach with local polynomials that generalizes the classical
method. If r is the degree of the polynomial, spx, yq is estimated by θ̂0 where θ̂ is the vector
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which minimizes
n
ÿ

i“1

˜

Kh2pYi ´ yq ´
r
ÿ

k“0

θkpXi ´ xq
k

¸2

Kh1pXi ´ xq.

We can show that this estimator can be written
řn
i“1wipxqKh2pYi´yq. This estimator is further

modified by Hyndman and Yao (2002) in order to get a positive function. From the same point
of view, De Gooijer and Zerom (2003) introduce an estimator of the form

řn
i“1wipxqKh2pYi´ yq

but with weights wipxq different from the classical estimator or from the one of Fan et al. (1996)
to keep the benefits of these (positivity and good bias respectively).

For all these estimators we may wonder about the choice of bandwidths. Different methods
have been advocated: calculation of the optimal bandwidth assuming Gaussian data (Chen
et al., 2001) or bootstrap approach (Bashtannyk and Hyndman, 2001). Fan and Yim (2004)
make a numerical study that shows the superiority of the cross-validation. Hall et al. (2004),
in addition to studying the case where X contains discrete components, are also interested in
bandwidth selection by cross-validation and give a theoretical result (see also Efromovich (2010a)
for the case where X includes discrete and continuous components). Holmes et al. (2012) propose
a fast numerical method for cross-validation that minimizes the log-likelihood rather than the
integrated squared risk. This kernel/cross-validation approach is also used by Bouaziz and Lopez
(2010) who consider a semiparametric single-index model in the case of censored data.

All previous papers study kernel estimators, but there are some other methods. Stone (1994)
introduce an estimator by maximizing the likelihood on a space of splines. Györfi and Kohler
(2007) study a histogram type estimator. The approach of Faugeras (2009) is a kernel one
but is original because the idea is to express the conditional density not as a quotient but as a
product, using copula. In the Markov framework also, Clémençon (2000) introduces two wavelets
thresholding estimators. The first as a quotient of an estimator of fX,Y and an estimator of fX
(see also [L2] for model selection approach), the second by the method of the boxes of Hoffmann,
using an analogy with the framework regression. His work is the first where adaptation is really
treated theoretically.

2.1.3 Notation and assumptions

Throughout this chapter, we assume that the conditional distribution of Y given X admits a
density with respect to the Lebesgue measure. We denote s this conditional density. It is also
assumed that the distribution of X admits a density f with respect to the Lebesgue measure.
So the couple pX,Y q admits as density fpxqspx, yq.

Here we consider the dimension 2, i.e. X and Y are one-dimensional. The extension to the
multidimensional case (X P Rd1 and Y P Rd2) does not pose any particular problem, at least
from a methodological point of view. The rates of convergence are amended in the usual way.
Application problems posed by the “curse of dimensionality” will be discussed at the end of this
chapter.
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We will use four different norms, defined in this way, for t : R2 Ñ R:

}t}2 “

ˆ
ĳ

t2px, yqdxdy

˙1{2

,

}t}f “

ˆ
ĳ

t2px, yqfpxqdxdy

˙1{2

,

}t}n “

˜

1

n

n
ÿ

i“1

ż

t2pXi, yqdy

¸1{2

,

}t}x,2 “

ˆ
ż

t2px, yqdy

˙1{2

.

These norms will sometimes be used for univariate functions: for example, if the function t is
univariate t : R Ñ R, we have }t}22 “

ş

t2pxqdx and }t}2f “
ş

t2pxqfpxqdx. We also use the dot
product x., .yf and the distance df associated to the norm }.}f :

xt1, t2yf “

ĳ

t1px, yqt2px, yqfpxqdxdy, df pt, Sq “ min
uPS

}t´ u}f . (2)

Furthermore it is assumed that X and Y are living in a compact set, assumed without loss of
generality equal to r0, 1s, that is to say that s has support r0, 1s2 and f has support r0, 1s. In fact,
one might assume that the distributions are not compactly supported, but our methods provide
an estimation of s only on a compact set A, so that we would actually estimate s restricted
to A. For the calculation of rates of convergence, assuming that s belongs to a Besov space
over R2 implies that s restricted to A belongs to the Besov space (with the same smoothness)
on A. So for the sake of simplicity we chose to always assume s with compact support r0, 1s2.
Estimation on a non-compact set is another issue, and the rate can be degraded in some cases:
see for instance Reynaud-Bouret et al. (2011).

The main assumption required in this document is the following:
Assumption (A) For all px, yq in r0, 1s2,

spx, yq ď }s}8 ă 8, 0 ă f0 :“ inf
r0,1s

f ď fpxq ď }f}8 ă 8

It is not much restrictive to assume s and f bounded. The really strong assumption is the lower
bound of f by f0. However, the need for this assumption can be understood without difficulty.
Estimating the distribution of X or the distribution of Y given X in the neighborhood of points x
where fpxq is equal to or close to 0 is of course very difficult, since there will be no observation Xi

in this area. Thus this assumption is classical in a regression (or conditional density) framework.
It is also required in most of the aforementioned works. It can be avoided if one uses only the
norm }.}f but then coming back to the norm }.}2 requires the assumption of lower bound.

We denote x` the positive part of x: x` “ maxpx, 0q. For two sequences u, v, we denote
un À vn if there exists a positive constant C not depending on n such that un ď Cvn. For two
functions ϕ,ψ, we denote

ϕb ψ : px, yq ÞÑ ϕb ψpx, yq “ ϕpxqψpyq

Last, we define the harmonic mean ᾱ of a couple of positive reals α “ pα1, α2q by

1

ᾱ
“

1

2

ˆ

1

α1
`

1

α2

˙

.
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2.2 Least squares contrast and estimator

2.2.1 Definition

The motivation of my first works about conditional density was the following. Is it possible to
find an alternative estimation method that avoids the disadvantages of the traditional method
by kernel ratio? In particular, if we look at the rate of convergence of an estimator of the form
f̂X,Y {f̂ , it will depend on the smoothness of f . But the smoothness of f can be much smaller
than the smoothness of s and thus slow down considerably the estimate. Moreover, the goal
was to develop an adaptive procedure, theoretically justified by oracle inequalities, taking into
account the anisotropy of the function. Compared to Clémençon (2000), we also got a more
implementable estimator with minimax rate of convergence without logarithmic loss.

We chose the method of contrast minimization. We want to build a random operator γn
depending on the data, such that for any bivariate function t, Erγnptqs is minimum for t “ s. So
it will be logical to take as an estimator a function t minimizing γnptq. This method is used in
density estimation with the contrast:

1

n

n
ÿ

i“1

r

ż

t2pyqdy ´ 2tpYiqs,

whose expectation is minimum when t is equal to the density of Yi. In regression, we have the
least squares contrast:

1

n

n
ÿ

i“1

rt2pXiq ´ 2tpXiqYis.

Taking inspiration from these two well-known contrasts, we can define

Definition 2.

γnptq “
1

n

n
ÿ

i“1

r

ż

t2pXi, yqdy ´ 2tpXi, Yiqs.

The link with the usual least squares contrast for regression functions
ş

spx, y1qψpy1qdy1 “
EpψpY1q|X1 “ xq is detailed in [L3], [L6]. This contrast verifies

Eγnptq “

ĳ

t2px, yqfpxqdxdy ´ 2

ĳ

tpx, yqspx, yqfpxqdxdy “ }t´ s}2f ´ }s}
2
f

which is minimum when t “ s.

2.2.2 Minimization

So we want to consider the following estimator

ŝ “ argmin
tPS

γnptq

with S a set of functions to be specified, that we always consider of the form S “ Vecttϕj b
ψk, pj, kq P Lu. But what is the meaning of this minimization? Assume for the sake of simplicity
that L is a Cartesian product L “ J ˆK. We can prove the following lemma.

Lemma 3. If the function ŝpx, yq “
ř

jPJ

ř

kPK âj,kϕjpxqψkpyq minimizes the empirical contrast
function γn on S “ Vecttϕj b ψk, j P J, , k P Ku, then

GÂ “ Z,

12



where Â is the coefficients matrix pâj,kqjPJ,kPK ,

G “

˜

1

n

n
ÿ

i“1

ϕj1pXiqϕj2pXiq

¸

j1,j2PJ

and Z “

˜

1

n

n
ÿ

i“1

ϕjpXiqψkpYiq

¸

jPJ,kPK

.

Moreover the minimum of the contrast is then γnpŝq “ trp´tZÂq.

We see on this formula that ŝ might be not well defined at any point, if G is not invertible.
This non-invertibility occurs when using localized bases, as the base of piecewise polynomials: if
there exists j0 in J such that there is no observation in the support of ϕj0 , then G has a null
column. Actually, it is more a problem of uniqueness than existence: this corresponds to the
case where the linear system has infinitely many solutions. We can show the following result.

Lemma 4. Let W “ tptpXi, yqq1ďiďn, t P Su and PW be the orthogonal projection on W . If ŝ
minimizes the empirical contrast function on S, then pŝpXi, yqq1ďiďn is uniquely defined as the
projection

pŝpXi, yqq1ďiďn “ PW

˜˜

ÿ

k

ψkpYiqψkpyq

¸

1ďiďn

¸

.

Then it is sufficient to interpolate to obtain values of ŝ at any x, y. But we can say that this
function is more a theoretical tool and the estimator constructed by our method is actually the
vector pŝpXi, yqq1ďiďn. This explains that in all cases where we are interested in the global risk,
we use the }.}n norm defined by

}t}n “

˜

1

n

n
ÿ

i“1

ż

t2pXi, yqdy

¸1{2

.

This empirical norm is the natural distance for our problem, and moreover we can notice that if
t is a deterministic function, under assumption pAq,

f0}t}
2
2 ď E}t}2n “ }t}2f ď }f}8}t}22

and then the mean of the empirical norm is equivalent to the usual L2 norm. To prove the results
that follow, we will always consider a space where the norm }.}n and its mean the norm }.}f are
close. This space having a probability close to 1, it will be sufficient to do the study on this
space and we will have the results with high probability.

In Section 2.4, we also study this estimator in the neighborhood of a given point x0. In this
case, the precise definition of sp., yq, even outside of the vector of observations X1, . . . , Xn, will
be required. Then we will set ŝpx, yq “

ř

j

ř

k âjkϕjpxqψkpyq with

pâjkqjPJ,kPK “

#

G´1Z if minpSpectrumpGqq ą thresholding to be specified,
0 otherwise.

2.2.3 Models

In the sequel of this document (Section 2), it is considered as space S a space of piecewise
polynomials of degree smaller than a non negative integer r. To each partition m of the set
r0, 1s2 into rectangles, one can associate Sm the space of all piecewise polynomial functions on
r0, 1s ˆ r0, 1s which are polynomial by coordinate with degree ď r on each rectangle R “ I1 ˆ I2

13



of m. Each approximation space, called model, is determined by a partition m. We denote |m|
the cardinality of the partition m and

Dm “ dimpSmq “ pr ` 1q2|m|

the dimension of Sm. We denote byM “Mn the set of all considered partitions, which will be
detailed later. In practice we consider a basis of Legendre polynomials in each direction, with
an affine transformation to come back to the given interval. Using again the previous notation,
Sm “ Vecttϕmj b ϕ

m
k , pj, kq P Lmu with

Lm “ tppI1, d1q, pI2, d2qq, 0 ď d1, d2 ď r,R “ I1 ˆ I2 P mu.

The ϕmj are Legendre polynomials, the index j indexing both the degree d (between 0 and r)
and the interval I:

ϕmj puq “ ϕmI,dpuq “

d

2d` 1

|I|
PdpT puqq1Ipuq

where Pd is the Legendre polynomial of degree d on r´1, 1s and T is the affine mapping that
maps I into r´1, 1s and |I| the length of the interval I.

In Section 2.3.4 (estimation for a conditional density with inhomogeneous smoothness), we
will use irregular partitions of the square. In this case Lm can not be written as a Cartesian
product, as assumed in Lemma 3. However, for each rectangle R of the partition m, we will have
a similar matrix equation and the uniqueness of the definition of the estimator will be true also
by the same projection argument.

In the following, we assume that for allm PM, Sm Ă Sm‹ , that is to say, Sm‹ is the maximum
model. We also assume that the maximum model is a Cartesian product in the following sense:

Sm‹ “ tt : R2 Ñ R, tpx, yq “
ÿ

jPJ‹m

ÿ

kPK‹m

ajkϕjpxqϕkpyq, ajk P Ru

with Dm‹ “ Dm‹1
Dm‹2

“ |Jm‹ ||Km‹ |.

2.3 Adaptation for the integrated risk

2.3.1 Study of the risk and model selection

For each model Sm, we denote by
ŝm “ argmin

tPSm

γnptq

the associated estimator. We can prove

Proposition 5 ([L11]). Under assumption (A), there exists a constant Cps, fq such that, for
all m PM,

E
“

}s´ ŝm}
2
n

‰

ď Cps, fq

"

d2
f ps, Smq `

Dm

n

*

.

We can recognize in the right hand side the usual bias-variance decomposition. The first
term is a bias term, that will be small if Sm is a large approximation space, but then the second
term will be big. If instead we try to minimize the stochastic error term, the bias will be large.
So the goal is to choose the best estimator in the collection tŝmumPM, the one that achieves the
best bias-variance trade-off. If s has smoothness α, one can prove that the bias df ps, Smq is of
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order D´α{2m . If one knows the regularity of s, then it is not hard to choose Sm that minimizes
D´αm ` Dm{n. Then we obtain that the estimation error E}s ´ ŝm}

2
n decreases as n´2α{p2α`2q

which is the usual rate of convergence for a bivariate function. But this assumption of knowledge
of the smoothness is obviously unrealistic. The goal here is to provide a procedure that adapts
to the smoothness of s. To do this, we use the model selection method introduced by Birgé
and Massart, which will allow us to select a data-driven estimator, by minimizing a penalized
criterion. Thus, we consider the random selection procedure

m̂ “ argmin
mPM

tγnpŝmq ` penpmqu (3)

and the penalized estimator
s̃ “ ŝm̂, (4)

where pen : M Ñ R` is called a penalty, and it remains to choose it such that s̃ is a good
estimator. Note that, with the notations of Lemma 3, γnpŝmq “ trp´tZÂq: that makes this
procedure easy to implement in practice.

2.3.2 Lower bound

In this section, we will show that the aforementioned rate of convergence n´α{p2α`2q is the best
we can get. Since we study a bivariate function, it may have different smoothnesses in x and y
axes: we call this anisotropic smoothness. We will see that it is then the harmonic mean of these
two smoothnesses that plays the role of α. Considering anisotropy is particularly meaningful
in our case of a conditional density. Indeed, the role of abscissa and ordinate are very different
and there is no reason for the smoothnesses to be identical. For a bibliography on anisotropy in
function estimation, see for example Autin et al. (2014) or Lepski (2014). So we will consider
functions with smoothness α “ pα1, α2q, in the sense of Besov spaces. Let us recall the definition
of anisotropic Besov spaces and the associated norm }.}Bα

pp1
.

Let A “ r0, 1s2 and e1 and e2 be the canonical basis vectors in R2 and for i “ 1, 2, Arh,i “
tx P R2;x, x` hei, . . . , x` rhei P Au. Next, for x in Arh,i, let

∆r
h,igpxq “

r
ÿ

k“0

p´1qr´k
ˆ

r

k

˙

gpx` kheiq

the r-th difference operator with step h. For t ą 0, the directional moduli of smoothness are
given by

ωri,ipg, tq “ sup
|h|ďt

˜

ż

A
ri
h,i

|∆ri
h,igpxq|

pdx

¸1{p

.

The norm of the Besov space Bα
p,p1pAq is defined by

}g}Bα
pp1
“

$

’

’

’

’

’

&

’

’

’

’

’

%

}g}p `

¨

˝

ż

˜

2
ÿ

i“1

t´αiωri,ipg, tq

¸p1

dt

t

˛

‚

1{p1

if p1 ă 8

}g}p ` sup
tą0

2
ÿ

i“1

t´αiωri,ipg, tq if p1 “ 8

for ri integers larger than αi. We say that g belongs to the Besov space Bα
p,p1pAq if }g}Bαpp1 ă 8.
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It is known that for p ă 1, the spaces Lp are quite unusual, so we always assume that p ě 1,
and for the same reason that p ě 1 . The anistropic Besov balls are then

Bpα, p, p1, Rq “ tt : r0, 1s2 Ñ R such that }t}Bα
pp1
ď Ru.

We recall that the harmonic mean ᾱ of α is defined by

1

ᾱ
“

1

2

ˆ

1

α1
`

1

α2

˙

.

In the isotropic case α1 “ α2 “ α, the harmonic mean ᾱ is simply equal to α. We can now write
the following result of lower bound, which generalizes that of Birgé (1983).

Theorem 6. Let 1 ď p ă 8 and 1 ď p1 ď 8. Assume that ᾱ{2 ą 1{p´ 1{2. Then, there exists
C ą 0 such that, for n large enough,

inf
ŝn

sup
sPBpα,p,p1,Rq

Es}ŝn ´ s}22 ě CR
2

ᾱ`1n´
2ᾱ

2ᾱ`2

where the infimum is taken over all estimators ŝn of s based on data pX1, Y1q, . . . , pXn, Ynq.

So we cannot expect a best rate than n´
2ᾱ

2ᾱ`2 for an estimator. In the following, we will show
that our estimator achieves this rate of convergence. This proves that it is the minimax rate of
convergence.

Actually there is an elbow phenomenon, which is usual in nonparametric estimation (see
Härdle et al., 1998). The case stated in the theorem is the regular case, when p ą 2

ᾱ`1 . It is
opposed to the “sparse” case: very regular functions in general but with some sharply localized
singularities (the name comes from the sparsity of the description in term of wavelet coefficients).
In this case the minimax rate has a logarithmic factor, and is of the form plog n{nqδ. We will
not consider such functions in this manuscript. We will only study “regular” functions, which
themselves can be divided into two cases. Functions with regular smoothness (p ě 2) can be
estimated by a linear estimator, while in the opposite case, the linear estimators are insufficient
and we will use other approximation spaces.

p|
2

ᾱ`1

|

2

hkkkkkkkkkkikkkkkkkkkkj

sparse
hkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkj

regular

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

inhomogeneous
loooooooooomoooooooooon

homogeneous

Finally, the space of values for p is divided into three zones:

1. p ď 2{pᾱ` 1q: “sparse” zone, the minimax rate has a logarithmic factor, and is of the form
plog n{nqβ . This case is not treated here.

2. 2{pᾱ` 1q ă p ă 2: intermediate zone (regular but inhomogeneous). Since p ą 2{pᾱ` 1q,
the rate is polynomial, but since p ă 2, the smoothness is inhomogeneous. In this case,
linear estimators are not sufficient. Since, for p ě 1, Bα

p,p1 Ă Bα
1,p1 Ă Bα

1,8, it is sufficient
to consider s P Bα

1,8.

3. p ě 2: homogeneous regular zone. The rate is still polynomial, but moreover we manage
to estimate s by linear estimators. In this case, we consider p1 “ 8. Indeed we recall that
Bα
p8 contains all spaces Bα

pp1 , for p
1 ą 0. In addition we have Bα

p,8 Ă Bα
2,8 for any p ě 2.

In this case, it is sufficient to consider that s P Bα
2,8, which includes all others.
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2.3.3 Homogeneous smoothness

First, we assume that p ě 2 (homogeneous smoothness). In this case, the bias can be bounded
by }s ´ sm} ď CpD´α1

m1
`D´α2

m2
q using simple linear spaces (this will not be true when p ă 2).

Nevertheless, to manage the anisotropy of s, we need anisotropic models.
We then consider partitions of the square into dyadic rectangles of the form r j´1

2m1 ,
j

2m1 rˆr
k´1
2m2 ,

k
2m2 r

(by closing the intervals on the right when j “ 2m1 or k “ 2m2). The partition m is then fully
determined by the number of cuts m1 on the x-axis and the number of cuts m2 on the y-axis.
Sm can be written Sm “ Em1 bHm2 with Em1 “ Vectpϕmj , j P Jmq, Hm2 “ Vectpϕmk , k P Kmq

and Dm “ Dm1Dm2 “ 2m1pr ` 1q2m2pr ` 1q. We denote by Mreg the set of partitions of this
form˚.

A useful property of these models is that they satisfy the norm connection between the L2

norm and the infinite norm: there exists φ0 “ 2r ` 1 ą 0 such that

@t P Sm }t}8 ď φ0

a

Dm}t}.

Moreover, we are always in the case where the directional sub-models E and H are nested
(Dm1 ď Dm11

ñ Em1 Ă Em11 and Dm2 ď Dm12
ñ Hm2 Ă Hm12

). We use dyadic intervals to
ensure that property. Then we have that, for all m and m1 in M, Sm ` Sm1 is included in a
model (Sm ` Sm1 Ă Sm2 with Dm21

“ maxpDm1 , Dm11
q and Dm22

“ maxpDm2 , Dm12
q) but this

model has large dimension because of the anisotropy. For the same reason there is not an only
model per dimension (one may have Dm1Dm12

“ Dm11
Dm2), but there is an only directional sub-

model per sub-dimension. Thus, the essential ingredient for the proof of the following theorem
is

ÿ

m

e´K
?
Dm “

ÿ

m1

ÿ

m2

e´K
?
Dm1Dm2 ď

ÿ

m1

e´pK{2q
?
Dm1

ÿ

m2

e´pK{2q
?
Dm2 ă 8.

Then we can state the following result.

Theorem 7 ([L6], improved version). We assume that assumption pAq is verified, and M Ă

Mreg and
@m PM Dm1 À n{ log2pnq and plog nq3 À Dm1Dm2 À n.

For γ ą 0, we define the estimator of s by (3) and (4) with penalty

penpmq “ p1` γq2}s}8
Dm1Dm2

n
.

Then, with probability larger than 1´ C0 expt´plog nq5{4u,

}s̃´ s}2n ď inf
mPM

`

C1d
2
f ps, Smq ` C2penpmq

˘

where C1 ą p1` 2γ´1q2, C2 ą 2p1` 2γ´1q and C0 depends on }s}8, }f}8, f0, r, γ. Moreover

E}s̃´ s}2n ď C3 inf
mPM

ˆ

d2
f ps, Smq `

Dm1Dm2

n

˙

`
C4

n

where C3 depends on }s}8, γ, and C4 depends on }s}8, }f}8, f0, r, γ.
˚In this section 2.3.3 could also be used as an approximation basis trigonometric polynomials or wavelets.
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Before discussing the proof, let us make a few remarks about the penalty. The issue of cali-
bration of γ will be mentioned later, Section 2.6. The presence of }s}8 is obviously problematic.
This term appears because of the anisotropy, it could be avoided if we only used isotropic spaces.
In practice, we replace it by an upper bound, or by }ŝ}8 where ŝ is an estimator of s. Then we
can prove the same result by adding some regularity assumption. We write this in more detail
in the next section.

Note on the proof:
We observe that for all functions t1, t2

γnpt1q ´ γnpt2q “ }t1 ´ s}
2
n ´ }t2 ´ s}

2
n ´ 2νpt1 ´ t2q

where

νptq “
1

n

n
ÿ

i“1

"

tpXi, Yiq ´

ż

R
tpXi, yqspXi, yqdy

*

“
1

n

n
ÿ

i“1

ttpXi, Yiq ´ ErtpXi, Yiq|Xisu .

The heart of the proof lies in the study of the centered empirical process ν, in particular in the
control of sup tPSm

}t}f“1
ν2ptq. We are reduced to show that, with great probability,

@m,m1 PM, sup
tPSm`Sm1
}t}f“1

ν2ptq ď
penpmq

1` γ
`

penpm1q

1` γ
.

To do this, it is sufficient to use Talagrand inequality. Finally we use dimpSm ` Sm1q ď
dimpSmq ` dimpSm1q. This simple inequality is actually crucial and allows to easily manage
the anisotropy. �

From Theorem 7, we can deduce the minimax rate of convergence of the risk.

Corollary 8. Assume that s belongs to the ball Bpα, 2,8, Rq with smoothness α “ pα1, α2q with
α1 ą 0 and α2 ą 0 :. We consider that the maximal degree r of the polynomials is larger than
αi ´ 1. Then, under assumptions of the above theorem,

E}s´ s̃}2n ď CR
2

ᾱ`1n´
2ᾱ

2ᾱ`2 .

Thus we obtain the rate of convergence n´
2ᾱ

2ᾱ`2 , which is optimal in the minimax sense (see
Theorem 6). The estimation procedure allows an adaptation of the approximation space to each
directional regularity. For example, if α2 ą α1, then the procedure chooses a space of dimension
Dm2 “ D

α1{α2
m1 ă Dm1 .

The empirical norm is the more natural in this problem, but if we were interested in a L2

control of the risk, we may modify the estimation procedure as follows:

s̃˚ “

#

s̃ if }s̃}2 ď n2{3,

0 otherwise.

We can prove a result similar to Theorem 7 but bounding E}s̃˚ ´ s}2 instead of its empirical
version:

: If we don’t use a localized basis (for example the trigonometric basis), the condition on Dm1 in Theorem 7
is stronger, which entails that Corollary 8 is true only for α1 ą 1{2 and α2 ą 1{2.
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Corollary 9. Under assumptions of Theorem 7, then

E}s´ s̃˚}22 ď C˚ inf
mPM

td2ps, Smq ` penpmqu `
C 1˚

n

where C˚ depends on γ, f0, }f}8 and C 1˚ depends on r, }s}8, f0, }f}8, γ. Moreover, under as-
sumptions of Corollary 8,

E}s´ s̃˚}22 ď CR
2

ᾱ`1n´
2ᾱ

2ᾱ`2 .

Simultaneously to my early work (2007), other papers have studied the conditional density
estimation with a requirement of theoretical results for adaptation. Efromovich (2007, 2010b)
presents an estimator by Fourier decomposition and preliminary estimate of f by an estimator
f̂ and then block thresholding (blockwise-shrinkage Efromovich Pinsker estimator). He gets
an oracle inequality and finds the same minimax rate of convergence in the context of Sobolev
anisotropic spaces or analytic functions. However, it must be assumed that f is differentiable with
bounded derivative. He was also interested in the particular case where Y is in fact independent
of X and therefore spx, yq depends only on y and not on x.

More recently, Chagny (2013) also searched for oracles inequality to estimate the conditional
density. Her estimator uses a preliminary estimator F̂ of the distribution function F of X and
is written

ŝpx, yq “
ÿ

j,k

âjkϕjpF̂ pxqqϕkpyq

with âjk “
1
n

řn
i“1 ϕjpF̂ pXiqqϕkpYiq and pϕjq the Fourier basis. This projection method has

the advantage of not requiring the implementation of matrix inversion. The chosen method for
adaptation is that of Goldenshluger-Lepski.

Another very recent work is that of Cohen and Le Pennec (2013) with a maximum likelihood
approach

ŝm “ argmin
tPSm

t´

n
ÿ

i“1

logptpXi, Yiqqu

followed by Birgé-Massart model selection. They give an oracle inequality for tensored and
convexified Kullback divergence. The method is implemented for spaces of square root of poly-
nomials on tree-structured partitions, or mixtures of Gaussian. It is applied to the segmentation
of hyperspectral images.

Even more recently, Bayesian studies of the subject have been published: see Scricciolo (2015)
and references therein. We can also cite a study that focuses on the case of noisy data: Wang
and Ye (2015).

These recent works are interesting but (except Clémençon (2000)) do not address the case
of functions with non-homogeneous smoothness. So I would like to handle now this case of
inhomogeneous smoothness. It is then required to use irregular models.

2.3.4 Inhomogeneous smoothness

When p ă 2 (inhomogeneous case), it is impossible to have a good approximation of s by a
projection onto a linear subspace. To get the same kind of result }s´sm} ď CpD´α1

m1
`D´α2

m2
q, it

is necessary to have nonlinearity, that is to say, given a dimension, the possibility to choose several
linear models of the same dimension. Figure 1 allows to get an idea of what is an inhomogeneous
smoothness.

Here, we still consider as a model Sm a space of piecewise polynomial functions with degree
smaller than or equal to r, but this time, the pieces will not be necessarily of the same size. For
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Figure 1: Example of homogeneous and inhomogeneous functions

the moment, we no longer assume anything on the set of partitionsM. Then we can prove the
following result.

Theorem 10 ([L11]). We assume that pAq is verified, and that the maximum model Sm‹ is
based on a regular partition in squares such that Dm‹ À

?
n. We also assume that there exists

tLmumPM a family of reals greater than or equal to 1, that may depend on n, such that
ÿ

mPM
expp´LmDmq ď 1. (5)

For some large enough positive absolute constant κ, we choose

penpmq “ κ

ˆ

}s}8 `
p2r ` 1q2

f0

˙

L2
mDm

n

Then
E
“

}s̃´ s}2n
‰

ď C

ˆ

max
mPM

L2
m

˙

min
mPM

"

d2
f ps, Smq `

Dm

n

*

.

where C only depends on κ, r, }s}8, f0, }f}8.

This result generalizes the previous theorem, which corresponds to Lm “ cst{p}s}8 ` p2r `
1q2f´1

0 q. The price for this generality is the appearance of f0 in the penalty.
Here we will detail the replacement in the penalty of }s}8 and f0 by }ŝ}8 and f̂0. We choose

m‚ “ m‚1ˆm
‚
2 a regular partition into cubes such that |m‚|2 ď n, we denote by f̂m‚1 the classical

projection estimator of f , and f̂0 “ maxpinfr0,1s f̂m‚1 , 1{nq.
We denote minpαq “ minpα1, α2q and ᾱ the harmonic mean of α1, α2. Then we can write

Corollary 11. Assume that s P Bpα, p, p1, Rq and f P Bpβ, p, p1, R1q
; with p1 “ 8 if p “ 1 or

p ě 2, p1 “ p if 1 ă p ă 2, and

ᾱ

2

ˆ

1´
1

minpαq

˙

ą
1

p
, β ą

ˆ

1

p
´

1

2

˙

`

` 1.

;Besov space in dimension 1 are defined as in dimension 2.
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Assume that |m‚1| ě lnn and, for all m PM,

penpmq “ κ̄

ˆ

}ŝm‚}8 `
p2r ` 1q2

f̂0

˙

L2
mDm

n

for some positive constant κ̄ large enough. Then, under assumptions of Theorem 10, for n large
enough,

Es
“

}s´ s̃}2n
‰

ď C 11

ˆ

max
mPM

L2
m

˙

min
mPM

"

d2
f ps, Smq `

Dm

n

*

.

where C 11 is a positive constant depending only on κ̄, r, }s}8,f0, }f}8.

We have already explained that we need irregular partitions to estimate inhomogeneous
functions. However, irregular partitions often form a too rich collection. If Lm only depends on
Dm, Condition (5) means that Lm has to be large enough to balance the number of models of
same dimension Dm. If the number of models for each dimension is high, the Lm’s have to be
high too. For instance, Birgé and Massart (1997) use weights pLmqmPM of order logpnq to ensure
Condition (5), which spoils the rates of convergence.

Here we use an especially interesting collection of partitions, for which the factor maxmPM L2
m

can be bounded by a constant, although the collection is rich enough to have good approximation
qualities with respect to functions of inhomogeneous smoothness. Let us describe this collection.
We call dyadic rectangle of r0, 1s2 any set of the form I1 ˆ I2 where, for l “ 1 or l “ 2,

Il “ rpkl ´ 1q2´jl , kl2
´jlr

with jl P N and kl P t1, . . . , 2jlu §. Otherwise said, a dyadic rectangle of r0, 1s2 is defined as a
product of two dyadic intervals of r0, 1s that may have different lengths. We denote byMirreg

such a collection of partitions. Let us underline that a partition ofMirreg may be composed of
rectangles with different Lebesgue measures, as illustrated by Figure 2. This was not the case
for the models used in the previous section. The partitions were then composed of rectangles
with all the same size 2´m12´m2 .

We consider the collection of partitions of r0, 1s2 into dyadic rectangles with side ě 2´J
‹

where 22J‹ “ |m‹| ď
?
n, so that the assumptions of Theorem 10 are verified.

Figure 2: A partition inMreg (left) and a partition inMirreg (right)

Notice that choosing such a partition into D dyadic rectangles amounts to choosing cutting
directions and a binary tree with D leaves. For instance, the tree corresponding to the above
figure is represented in Figure 3.

§and the interval is closed on the right if kl “ 2jl .

21



r0, 1s ˆ r0, 1s

r0, 1s ˆ
“

0, 1
2

‰

“

0, 1
2

‰

ˆ
“

0, 1
2

‰

p1q

‰

1
2 , 1

‰

ˆ
“

0, 1
2

‰

‰

1
2 , 1

‰

ˆ
“

0, 1
4

‰

p2q

‰

1
2 , 1

‰

ˆ
‰

1
4 ,

1
2

‰

p2q

r0, 1s ˆ
‰

1
2 , 1

‰

r0, 1s ˆ
‰

1
2 ,

3
4

‰

p2q

r0, 1s ˆ
‰

3
4 , 1

‰

Figure 3: Binary tree labeled with the sequence of cutting directions p2, 1, 2, 2q corresponding
with the dyadic partition represented on the right side of Figure 2.

Hence it can be deduced that for this collection of partitions, Lm “ logp16q works. This gives
the following result. If s̃ is built usingM ĂMirreg, then

Es
“

}s´ s̃}2n
‰

ď C2 min
mPM

"

d2
f ps, Smq `

Dm

n

*

where C2 is a positive real number only depending on κ, r, }s}8,f0, }f}8.
We are now able to compute estimation rates, using approximation results of Akakpo (2012).

Let
qpα, pq “

minpαq

ᾱ

1` ᾱ

ᾱ

ˆ

ᾱ

2
´

ˆ

1

p
´

1

2

˙

`

˙

.

Contrary to Klemelä (2009), we have chosen a parameter J‹ that does not depend on the unknown
smoothness of s, hence the factor λ “ minpαq{ᾱ in the above definition. That factor, which is
inferior or equal to 1 with equality only in the isotropic case, may be interpreted as an index
measuring the lack of isotropy. We assume that qpα, pq ą 1, which is equivalent to

ᾱ ą

#

2
λ ´ 1 if p “ 2

1
λ `

b

1
λ2 ` 1 if p “ 1

where λ “ minpαq{ᾱ

(for instance in the isotropic case and p “ 2, it means α ą 1).
As explained above, if p ě 2, Bα

p,p1 Ă Bα
2,8, and if 1 ď p ă 2, Bα

p,p1 Ă Bα
1,8, then we only

consider p “ 2 or p “ 1 and p1 “ 8.

Theorem 12 ([L11]). We assume that pAq is verified, and M Ă Mirreg, and the maximum
model verifies

Dm‹ À
?
n.

Assume that s P Bpα, p,8, Rq with p “ 1 or p “ 2, and qpα, pq ą 1. If n´1 ď R2 ď nqpα,pq´1,
then there exists a postive real number Cpα, r, pq such that

Es
“

}s´ s̃}2n
‰

ď C2Cpα, r, pq}f}8
`

R2n´ᾱ
˘2{p2ᾱ`2q

.
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We can extend this result to higher dimensions (voir [L11]). The rate
`

R2n´ᾱ
˘1{p2ᾱ`2q is

the minimax one. Here we are able to reach that rate not only for functions with homogeneous
smoothness, but also for functions with inhomogeneous smoothness, i.e. for 0 ă p ă 2. It was
impossible with the collection of regular models considered above. Besides, among the cited
references, only Klemelä (2009) can deal simultaneously with anisotropy and inhomogeneous
smoothness (but in the context of density estimation). Here we improve its result by allowing to
approximately reach the minimax risk up to a factor that does not depend on n and considering
smoothness parameters possibly larger than 1.

I also would like to mention some work published after ours. Birgé (2013) shows that his
estimation method from a family of tests (T-estimators) can be applied to the case of the con-
ditional density, and thus provides an oracle inequality. Unfortunately, it is more a theoretical
than a practical method. In this line, the work of Sart (2014) is more implementable. It deals
with the estimation of the transition of a Markov chain by a piecewise constant function on a
random partition. The model selection is a mixture between a contrast minimization and a test
procedure à la Birgé and Baraud. This method allows the author to reduce the number of as-
sumptions (even if the lower bound condition for the stationary density is necessary when using
L2 loss rather than Hellinger loss), and to avoid unknown quantities in the penalty, at the cost
of a logarithmic loss in the rate. His simulations are fast (linear complexity in n) and promising.

2.3.5 Numerical illustrations

The implementation of our estimation procedure is quite simple. Indeed, when the model is
written in the form of a Cartesian product (regular partitions), using again Lemma 3, a matrix
inversion allows to find ŝm and then m̂ “ arg minmPMt´trptZÂq`κ}ŝm‚}8Dm{nu where }ŝm‚}8
is an estimator of }s}8. In the case of irregular partitions, there is an equivalent of Lemma 3 for
each rectangle of the partition. Thus

m̂ “ argmin
mPM

ÿ

RPm

t´trptZRÂRq ` κ
}ŝm‚}8
n

u

where ZR and ÂR are pr ` 1q ˆ pr ` 1q matrices, restrictions of Z and Â to the rectangle R.
That characterization allows to determine m̂ without having to compute all the estimators of
the collection tŝmumPM. Indeed, we can for instance adapt to our estimation framework the
algorithm proposed by Donoho (1997), which gives a computational complexity at most linear
in the number of observations. The implementation, however, requires the choice of κ in the
penalty. In the proofs, an upper bound of this constant is obtained, but it is unfortunately very
rough and useless in practice. The calibration of this constant is a sensitive topic that we will
discuss in Section 2.6.

Figures 4 and 5 illustrate the simulation results (with a histogram basis on r “ 0), with κ
calibrated by hand on a preliminary set of examples.

2.4 Pointwise adaptation

2.4.1 Specific Motivation

Here we are interested in estimating the conditional density s of Y knowing X “ x at a given
point x. The motivation comes from methods used in population genetics. The purpose of
these statistical approaches in population genetics is to infer the evolutionary processes that
generated the observed data, typically the gene pool of studied populations, and to possibly
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Figure 4: Estimation when the Xi’s are i.i.d. Upr0, 1sq and, given Xi “ x, Yi „ 0.5N p8 ´
4x, 1q ` 0.5N p8 ` 4x, 1q. Top left: Estimator using Mreg for n “ 2000. Top right: True
conditional density s. Bottom : two sections of s together with the corresponding sections of s̃
for x “ 0.1 (bottom-left) and x “ 0.82 (bottom-right).

Figure 5: Estimation when the Xi’s are i.i.d. Upr0, 1sq and Yi “
1
4pgpXiq ` 1q ` 1

8εi, i “
1, . . . , n where pεiq1ďiďn are i.i.d. standard normal and g is the density of 3

4N p1{2, p1{6q
2q `

1
4N p3{4, p1{18q2q. Top left: Level lines of the conditional density s. Top right: selected partition
for n “ 1000. Bottom : two sections of s together with the corresponding sections of s̃.
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infer phylogenetic trees. Classically, used statistical methodologies are based on the likelihood
but the complexity of population genetics data often makes the computation or even writing
the likelihood impossible. ABC methods (for Approximate Bayesian Computation) have been
developed to address this problem. Proposed in population genetics where the data live in very
large dimension, they have spread to other areas such as social sciences, ecology and in other
areas of biology (see the survey Marin et al. (2012)). The standard ABC procedure is very
intuitive and consists in

• simulating a lot of parameters values using the prior distribution and, for each parameter
value, a corresponding dataset,

• comparing this simulated dataset to the observed one;

• finally, keeping the parameter values for which distance between the simulated dataset and
the observed one is smaller than a tolerance level.

That is a crude nonparametric approximation of the target posterior distribution (the conditional
distribution of the parameters given the observation). Even if some nonparametric perspectives
have been considered (see Blum (2010) or Biau et al. (2012)), we easily imagine that, using the
simulated couples (parameters and datasets), a good nonparametric estimation of the posterior
distribution can be a credible alternative to the ABC method. Such a procedure has to consider
that the conditional density has to be estimated only for the observed value in the conditioning.

So the ABC algorithms show that it is necessary that the regularization parameterm depends
on the point x. All the methods discussed above allow to globally select the “best” m̂, then used
for all x. Here, we would like that this m̂ depends on the estimation point x. Indeed, according to
the point x, the distribution of Y given X “ x can be easily approximated by a simple model or
requires a more complex model. In this section, we would therefore introduce an estimator with
the same qualities as before (easily implementable and fully data-driven) but that also satisfies
non-asymptotic oracle inequalities depending on the estimation point x. We will only consider a
function s with homogeneous smoothness and regular models. The assumption of lower bound
of the marginal density f will be needed again, even if it is now limited to a small neighborhood
of x. However, we try to study the presence of f0 in detail, and show that it is unavoidable in
some sense. To do this, in addition to studying previous contrast-minimization estimator, we
also introduce a kernel estimator in Section 2.4.6. Since y Ñ spx, yq is a density, we will assess
the quality of an estimator ŝ at a given point x P R and in L2 norm with respect to variable y.
In other words, we will use the norm defined for all function t by

}t}x,2 “

ˆ
ż

R
t2px, yqdy

˙1{2

.

We denote Vnpxq the neighborhood of x on which we conducts the study. Given A a positive
number and pknq a sequence of real numbers tending to infinity, we set

Vnpxq “

„

x´
2A

kn
, x`

2A

kn



.

Notice that the size of Vnpxq tends to 0. The study will be made only on Vnpxq. In particular,
Assumption pAq is now
Assumption (A) For all y in r0, 1s and for all u in Vnpxq,

spu, yq ď }s}8 ă 8, 0 ă f0 :“ inf
Vnpxq

f ď fpuq ď }f}8 ă 8.
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2.4.2 Estimators

We use the same estimator as before by minimizing the contrast γn on a model Sm, where
m PMreg. The only difference is that this time we make a partition of the rectangle Vnpxqˆr0, 1s
instead of r0, 1s2 (for a partition m, Vnpxq is divided into 2m1 pieces and r0, 1s into 2m2 pieces).
Moreover, since x is given, for each m we can define the interval Im among 2m1 possible intervals,
such that x belongs to the interval Im. Hence we have

ŝmpx, yq “
ÿ

K,ImˆKPm

r
ÿ

d1,d2“0

âmK,d1,d2
ϕIm,d1pxqϕK,d2pyq

with GmÂm “ Zm where Âm “ pâmK,d1,d2
q0ďd1,d2ďr,ImˆKPm and

Gm “

˜

1

n

n
ÿ

i“1

ϕIm,d1pXiqϕIm,d2pXiq

¸

0ďd1,d2ďr

Zm “

˜

1

n

n
ÿ

i“1

ϕIm,dpXiqϕK,d2pYiq

¸

0ďd1,d2ďr,ImˆKPm

Then we define the estimator at point x by

Âm :“

#

pGmq
´1Zm if minpSppGmqq ą p1` γq

´2{5
pf0,

0 otherwise,

where γ is a positive real number, and pf0 an estimate of f0. Here, for a symmetric matrix M ,
SppMq denotes the spectrum of M , i.e. the set of its eigenvalues. This expression allows us to
overcome problems if Ĝm is not invertible. Note that, when r “ 0, where r is maximal degree of
Legendre polynomials, this estimator can be written more simply:

ŝmpx, yq “
ÿ

K,ImˆKPm

cardti, pXi, Yiq P I
m ˆKu

cardti,Xi P Imu

1Kpyq

|K|
.

Then we have defined the collection of estimators from which to select the final estimator. To
do this, we need a preliminary estimator of f denoted f̂ . We assume that f̂ satisfies assumption

Assumption (B)
pf0 :“ inf

tPVnpxq
|f̂ptq| ą 0.

and

@λ ą 0, P

˜

sup
tPVnpxq

ˇ

ˇ

ˇ

ˇ

ˇ

fptq ´ f̂ptq

f̂ptq

ˇ

ˇ

ˇ

ˇ

ˇ

ą λ

¸

ď C expt´plog nq3{2u,

where C is a constant only depending on λ and f .
It is shown in [L15] that we can find such an estimator if f belongs to a Hölder space. For kernel
method (Section 2.4.6), we moreover need that f̂ is independent of the data pX1, Y1q, . . . , pXn, Ynq.
In this case it is assumed that we have available additional data Xn`1, . . . , X2n needed to build
this preliminary estimator f̂ .

2.4.3 Adaptation

We use the Goldenshluger-Lepski methodology mentioned in Section 1. Let us describe it in a
more general context. Given a set of parameters M, for any m PM, we assume we are given
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a smoothing linear operator denoted Km and an estimate ŝm. For any m PM, ŝm is related to
Kmpsq via its expectation and we assume that Erŝms is close to (or equal to) Kmpsq. The main
assumptions needed for applying the methodology are

Km ˝Km1 “ Km1 ˝Km (6)

and
Kmpŝm1q “ Km1pŝmq (7)

for any m,m1 P M. This method is a convenient way to select an estimate among pŝmqmPM
which amounts to select m PM and can be described as follows: For } ¨ } a given norm and σ a
function to be chosen later (σ2pmq is the equivalent to penpmq), we set for any m inM,

Apmq :“ sup
m1PM

 

}ŝm1 ´Km1pŝmq} ´ σpm1q
(

`
.

Then we estimate s by using s̃ :“ ŝm̂, where m̂ is selected as follows:

m̂ :“ argmin
mPM

tApmq ` σpmqu .

This choice can be seen as a bias-variance trade-off, with σpmq an estimator of the standard
deviation of ŝm and Apmq an estimator of the bias. This method was originally used for kernel
estimators, and in this case Km is the convolution operator with a kernel dilated of h “ 1{m.
This is what we will use in Section 2.4.6. Here, we adapt the procedure somewhat, taking for Km
the projection on pSm, x., .yf q. Of course (6) is satisfied, but not (7). Therefore, we modify this
approach to overcome this problem. The idea is the following. Let us denote Sm^m1 “ SmXSm1 .
Taking inspiration from the fact that Km ˝Km1psq “ Km^m1psq, let us set for any pm,m1q PM2,

K̃mpŝm1q “ ŝm^m1 .

This operator is only defined on the set of the estimators ŝm but verifies (7). Now the previous
reasoning can be reproduced and the above method can be applied by replacing Km1 by K̃m1 in
Apmq.

More precisely, we denote

m^m1 “ pm1 ^m
1
1,m2 ^m

1
2q “ pminpm1,m

1
1q,minpm2,m

1
2qq

and we estimate s by s̃ “ ŝm̂ where

m̂ “ m̂pxq :“ argmin
mPM

tApmq ` σpmqu

and
Apmq :“ sup

m1PM

“

}ŝm1 ´ ŝm1^m}x,2 ´ σpm
1q
‰

`
.

2.4.4 Oracle inequality

We recall that Km is the orthogonal projection on pSm, x, yf q where x, yf is the dot product
defined in (2).
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Theorem 13 ([L15]). We assume that pAq, pBq are verified, and for all m PM ĂMreg

knpr ` 1q ď Dm1 ď
pf0n

plog nq3
and log2pnq ď Dm2 ď n.

For γ ą 0, we choose

σpmq “ χ̂

d

Dm1Dm2

pf0n
with χ̂2 “ p1` γq2

4pr ` 1q3

|Vnpxq|

z}f}8
pf0

.

Then, with probability larger than 1´ C0 expt´plog nq5{4u,

}s̃´ s}x,2 ď inf
mPM

˜

C1 sup
tPVnpxq

}Kmpsq ´ s}t,2 `
5

2
χ̂

d

Dm1Dm2

pf0n

¸

where C1 “ 1` 2pr ` 1qf´1
0 }f}8 and C0 depends on |Vnpxq|, r, γ, }s}8 and f . Moreover

E1{2}s̃´ s}2x,2 ď C̃1 inf
mPM

˜

sup
tPVnpxq

}Kmpsq ´ s}t,2 `

d

Dm1Dm2

f0n

¸

`
C̃2
?
n

where C̃1 depends on |Vnpxq|, r, γ, }f}8, f0 and C̃2 depends on |Vnpxq|, r, γ, }s}8, f .

The right hand side corresponds to the best trade-off between a bias term and a variance
term. Here the constant χ̂ in the penalty depends on pf0 and }f̂}8 but however, in the case where
r “ 0 (histogram basis), it is possible to use the simpler penalty term χ̂ “ p1 ` γq2{

a

|Vnpxq|
and the previous result still holds.

Note on the proof:
Let us fix m PM. By definition of Apmq and m̂

}ŝm̂ ´ s}x,2 ď }ŝm̂ ´ ŝm^m̂}x,2 ` }ŝm^m̂ ´ ŝm}x,2 ` }ŝm ´ s}x,2

ď Apmq ` σpm̂q `Apm̂q ` σpmq ` }ŝm ´ s}x,2

ď 2Apmq ` 2σpmq ` }ŝm ´Kmpsq} ` }Kmpsq ´ s}.

It remains essentially to upper bound Apmq. By splitting }ŝm1 ´ ŝm1^m}x,2 into bias+variance,
one can show that

Apmq ď pr ` 1q}f}8f
´1
0 sup

tPVnpxq
}s´Kmpsq}t,2 ` sup

m1PMn

 

2}ŝm1 ´Km1psq} ´ σpm1q
(

`
.

Using a Talagrand inequality, we prove that the last term vanishes on a space of great probability.
�

2.4.5 Rate of convergence

Since we are interested in the smoothness at a given point, it is assumed here that s belongs to
a Hölder space. This is as considering Bpα,8,8, Rq. Let

H2pα,Rq “
!

s : R2 Ñ R such that for all x, y, x1, y1 P R,
ˇ

ˇ

ˇ

ˇ

ˇ

Btα1us

Bxtα1u
px1, yq ´

Btα1us

Bxtα1u
px, yq

ˇ

ˇ

ˇ

ˇ

ˇ

ď R|x1 ´ x|α1´tα1u and

ˇ

ˇ

ˇ

ˇ

ˇ

Btα2us

Bytα2u
px, y1q ´

Btα2us

Bytα2u
px, yq

ˇ

ˇ

ˇ

ˇ

ˇ

ď R|y1 ´ y|α2´tα2u
)

where tβu “ maxtl P N : l ă βu. Let us first state a lower bound result for the used norm.
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Theorem 14 ([L15]). There exists a positive constant C depending neither on R nor n such
that, for n large enough,

inf
ŝn

sup
ps,fqPH̃pα,Rq

!

pfpxqq
2ᾱ

2ᾱ`2Es}s´ ŝn}2x,2
)

ě CR
2

ᾱ`1n´
2ᾱ

2ᾱ`2

where the infimum is taken on all estimators ŝn of s based on observations pX1, Y1q, . . . , pXn, Ynq
and H̃pα,Rq is the set such that the conditional density s belongs to H2pα,Rq and the marginal
density f is continuous.

Here we will show that our estimator achieves this rate.

Theorem 15 ([L15]). Let s P H2pα,Rq. We assume that the models satisfy r ą α1 and r ą α2.
Under assumptions pAq, pBq, the estimator s̃ defined is Section 2.4.3 enjoys

E}s´ s̃}2x,2 ď CR
2

ᾱ`1n
´2ᾱ
2ᾱ`2

where C depends on r, α1, α2, f0 and }f}8.

Thus our estimator is adaptive minimax. This procedure can be extended to higher dimen-
sions, at least theoretically.

2.4.6 Kernel procedure

Here we present another approach to estimate the conditional density s. Our motivation is to
study more finely the presence of f0. Moreover kernel estimators are natural and computationally
efficient.

Let us assume for a while that f is known and positive. We introduce a kernel K, namely
a bounded integrable function K such that

ť

Kpu, vqdudv “ 1 and }K}2 ă 8. Then, given a
regularization parameter, namely a bandwidth h “ ph1, h2q belonging to a set H to be specified
later, we set

Khpu, vq “
1

h1h2
K

ˆ

u

h1
,
v

h2

˙

.

It is simpler to consider K of the form Kpu, vq “ Kp1qpuqKp2qpvq, and we will assume that the
function Kp1q is supported by r´A,As. For all h “ ph1, h2q P H, we set

ŝhpx, yq :“
1

n

n
ÿ

i“1

1

fpXiq
Khpx´Xi, y ´ Yiq. (8)

For any given h P H, we provide a lower bound of the risk of ŝh by using the following
bias-variance decomposition

E
“

}ŝh ´ s}
2
x,2

‰

“ }Kh ‹ s´ s}
2
x,2 `

ż

Varpŝhpx, yqqdy,

where Kh ‹ spx, yq :“
ş

Khpx´ u, y ´ vqspu, vqdudv.

Proposition 16 ([L15]). We assume that s is bounded, and that f is positive and continuous in
the neighborhood of x, and that maxHÑ 0 when nÑ `8, then

E
“

}ŝh ´ s}
2
x,2

‰

ě }Kh ‹ s´ s}
2
x,2 `

}K}22
fpxqnh1h2

ˆ p1` op1qq `O

ˆ

1

n

˙

. (9)
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This lower bound can be viewed as a benchmark for our procedure. In particular, our chal-
lenge is to build a data-driven kernel procedure whose risk achieves the lower bound given in (9).
This is the goal of the next paragraph where we modify f̂h by estimating f when f is unknown.

We use the aforementioned estimator f̂ , but this time more fully. As already explained, it
is assumed in this section that additional data Xn`1, . . . , X2n are available and used in the con-
struction of f̂ so that this estimator is independent of the data pX1, Y1q, . . . , pXn, Ynq. Naturally,
we replace ŝh defined in (8) by

ŝhpx, yq “
1

n

n
ÿ

i“1

1

f̂pXiq
Khpx´Xi, y ´ Yiq.

Then, we use the Goldenshluger-Lepski method, as previously, except that the regularization
parameter is denoted h, instead of m to match with usual notation of the literature. Similarly,
the set of bandwidths is denoted by H, instead ofM. We estimate s by s̃ “ ŝĥ where

ĥ “ ĥpxq :“ argmin
hPH

tAphq ` σphqu ,

Aphq :“ sup
h1PH

!

›

›ŝh1 ´ ŝh,h1
›

›

x,2
´ σph1q

)

`
,

and

ŝh,h1px, yq “
1

n

n
ÿ

i“1

”

f̂pXiq

ı´1
pKh ‹Kh1qpx´Xi, y ´ Yiq “ pKh1 ‹ ŝhqpx, yq.

Then we can prove an oracle inequality for this estimator.

Theorem 17 ([L15]). We assume pAq, pBq and the bandwidths ph1, h2q are such that h1 “
1
k , h2 “

1
l , with k and l integers and

kn ď
1

h1
ď

pf0n

plog nq3
et log2pnq ď

1

h2
ď n.

For a given γ ą 0, we choose

σphq “
χ

b

pf0nh1h2

with χ “ p1` γqp1` }K}1q}K}2,

We have with probability larger than 1´ C expt´plog nq5{4u,

}s̃´ s}x,2 ď inf
hPH

$

&

%

C1 sup
tPVnpxq

}Kh ‹ s´ s}t,2 `
C2

b

pf0nh1h2

,

.

-

`
C3

f0
sup

tPVnpxq
|f̂ptq ´ fptq|,

where C1 “ 1`2}K}1, C2 “ p1`γq}K}2p3`2}K}1q, C3 depends on K, γ et }s}8 and C depends
on K, γ, f et }s}8. Moreover

E
“

}s̃´ s}2x,2
‰1{2

ď C̃1 inf
hPH

#

sup
tPVnpxq

}Kh ‹ s´ s}t,2 `
1

?
f0nh1h2

+

`
C̃2

f0
E1{2

˜

sup
tPVnpxq

|f̂ptq ´ fptq|2

¸

`
C̃3
?
n
,

where C̃1 depends on K, γ, C̃2 depends on K, γ et }s}8 and C̃3 depends on K, γ, f , }s}8.
Moreover, in the case where f is known (f̂ “ f , pf0 “ f0), C and C̃3 do not depend on f .
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This result almost matches up to the aforementioned lower bound, since the size of Vnpxq
goes to 0 when n Ñ `8. So we have optimality since the term f0 (or at least fpxq) in the
variance is unavoidable. This leads to the following result of rate, for s P H2pα,Rq (assuming
that the kernel K is of sufficiently large order)

E
“

}s̃´ s}2x,2
‰

ď C

˜

R
2

ᾱ`1 pnf0q
´ 2ᾱ

2ᾱ`2 `
1

f2
0

E

˜

sup
tPVnpxq

|f̂ptq ´ fptq|2

¸¸

.

The term suptPVnpxq |f̂ptq´fptq| is obviously cumbersome, but it does not degrade the rate if f is
smooth enough. (Note that methods using a quotient of an estimator of fX,Y and an estimator
of f have an even slower rate, because fX,Y px, yq “ fpxqspx, yq is less regular than s).

In the numerical study lead in [L15] on classic examples (so regular enough), it turned out
that the kernel estimator was more efficient in terms of risk, although slower to implement. The
calibration of γ in the penalty was also easier to implement for this kernel procedure. Perhaps it
would be better, for the projection estimator, to replace σpm1q by a penalty σpm,m1q depending
both on m and m1 to be closer to the true variance.

2.5 Extensions

2.5.1 Extension to dependent data

The above results can be extended to the case of dependent variables. The observations frame-
work is the following. Assume now that tpXi, YiquiPZ is a strictly stationary process and the
variables Xi have a density f with respect to the Lebesgue measure. The goal is still to estimate
the conditional density s of Yi given Xi from the data pX1, Y1q, . . . , pXn, Ynq. The case of Markov
chains is particularly important, especially in view of applications: if pXiqiPZ is a homogeneous
Markov chain of order 1, and if we denote Yi “ Xi`1 for all i P Z, then the conditional density
s of Yi given Xi is the transition density of the chain pXiqiPZ, and our aim is to estimate it from
a trajectory X1, . . . , Xn`1.

To extend our results and manage dependence, we will assume that the process tZiuiPZ “
tpXi, YiquiPZ satisfies mixing conditions: we are particularly interested in β-mixing and ρ-mixing.
So we will recall the definition of these concepts. For two sub σ-fields A and B of F , the β-mixing
coefficient, or absolute regularity, is defined by

βpA,Bq “ E
„

sup
BPB

|PpB|Aq ´ PpBq|


,

and the ρ-mixing coefficient, or maximal correlation, is defined by

ρpA,Bq “ sup
X,Y

|CovpX,Y q|
a

VarpXqVarpY q
,

where the supremum is taken over all real random variables X and Y respectively A- et B-
measurable and square integrable. These quantities quantify the dependence, they are equal to
0 if A and B are independent and are all the larger than the dependence between A and B is
strong. To precisely define our conditions, we denote Zi “ pXi, Yiq and for all integer j,

βZ
j “ β pσpZi, i ď 0q, σpZi, i ě jqq ,

ρZj “ ρ pσpZi, i ď 0q, σpZi, i ě jqq .
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Thus we measure the dependence between the first variables and the next variables spaced out
j ranks. The process is called β-mixing if limjÑ`8 β

Z
j “ 0 (idem for ρ).

We are now in position to state our dependence assumptions. In each case, we also define
real numbers ϑ and δ that will appear in the next result.

Assumption pDβq The process pZiqiPZ is geometrically β-mixing, with a ě 0 and b ą 0 such
that, for all positive integer j, βZ

j ď a expp´bjq. Then we denote ϑ “ 1 and δ “ 1.

Assumption pDβρq Assumption pDβq is satisfied et, in addition, the series Sρ :“
ř

jPN ρ
Z
2j

converges. Then we denote ϑ “ 250
ś8
j“0

´

1` ρZ
t2j{3u`1

¯

and δ “ 0.

Assumption pDβ2-ρq Assumption pDβq is satisfied et, in addition, the series S2-ρ :“
ř

jě1 ρpσpZ0q, σpZjqq
converges. Then we denote ϑ “ p1` 2S2-ρq and δ “ 0.

Assumption pDβcondq Assumption pDβq is satisfied et, in addition, for all j ě 2, Zj is inde-
pendent of Z1 conditionally to Xj . Then we denote ϑ “ 1 and δ “ 0.

Compared to other conventional mixing notions, we know that the β and ρ-mixing are implied
by the φ-mixing (uniform mixing) and entail the α-mixing, hence our assumptions are quite mild.
If we try to compare our four assumptions together, we can say that the first pDβq is the weakest,
that pDβ2-ρq implies pDβρq in the case of Markov chains and the last pDβcondq does not involve
ρ-mixing condition. This last assumption is verified when estimating the transition density of a
Markov chain pXiq and Yi “ Xi`1. Many processes verify these assumptions, especially among
Markov chains, ARMA or ARCH models: see [L11].

In the literature, in general, the assumptions required in the old papers are rather strong
(ρ-mixing, Doeblin condition). However, several authors are able to assume only a a Harris
recurrence assumption (Athreya and Atuncar, 1998) or α-mixing (Masry (1989), Cai (1991),
Chen et al. (2001)). Then one can wonder if our assumptions could be weakened and if we
can prove a result under α-mixing assumption. This is indeed the case as long as we do not
try to make adaptation and to prove oracle inequalities. Akakpo (2009) proved a version of
Proposition 5, which bounds the risk E

“

}s´ ŝm}
2
n

‰

for a given model m, under assumption of
geometrical α-mixing. Actually a sufficient condition to ensure that Es

“

}ŝm ´ sm}
2
n

‰

is of the
same order as in the independent case is that for some constant C and for any t P Sm

Var

˜

n
ÿ

i“1

tpZiq

¸

ď CnVar ptpZ1qq . (10)

Still, Assumptions pDβρq and pDβ2-ρq are almost optimal for obtaining such an inequality, in
the following sense: a Harris ergodic and reversible Markov chain pZiqiPZ satisfies (10) if and
only if it is ρ-mixing.

We now state a result of oracle inequality. We are interested in integrated risk and we consider
the same conditions (same model, same notation) as in Section 2.3.4. The aim is to prove again
Theorem 10 in the dependent framework. We will see that a logarithmic factor appears in the
penalty (and therefore in the rate of convergence) under the only condition of β-mixing, but
this term vanishes under the stronger assumptions pDβρq, pDβ2-ρq or pDβcondq. This is what
means the factor logδpnq with δ P t0, 1u.
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Theorem 18 ([L11]). We assume that pZiqiPZ satisfies assumption pDβq and s, f satisfy As-
sumption pAq. We assume that the maximum model Sm‹ is of Cartesian type and is made of a
regular partition in cubes such that Dm‹ À

?
n{ log n. We also assume that there exists a collec-

tion tLmumPM of real numbers such that
ř

mPM expp´LmDmq ď 1. For a large enough numerical
constant κ ą 0, we choose

penpmq “ κ

ˆ

ϑpb´1 logpnqqδ}s}8 `
p2r ` 1q2

b2f0

˙

L2
mDm

n

(where b, δ and ϑ are defined in the dependence assumptions). Then

E
“

}s̃´ s}2n
‰

ď C

ˆ

max
mPM

L2
m

˙

min
mPM

"

d2
f ps, Smq `

Dm

n

*

.

where C depends on κ, ϑ, δ, a, b, r, }s}8, f0, }f}8.

Thus, under the weakest assumption pDβq there is a term logpnq in the penalty. Under the
stronger assumptions pDβρq, pDβ2-ρq, we can avoid this but the price to pay is the presence of
the term ϑ, which is rather troublesome. For practical purposes, it is necessary to include this
term in the tuning parameter κ.

The best case is when Assumption pDβcondq is verified, which is the case when we estimate
the transition density of a Markov chain. Indeed, in this case, δ “ 0 and ϑ “ 1, so that the
penalty is almost as simple as in the independent case. In this case, it is even possible to
only assume an arithmetical β-mixing, if we slightly strengthen the condition on the maximum
model; and we can even avoid the term b2 in the penalty if the mixing is strong enough. In the
simple case of a transition with homogeneous smoothness and using regular models, a penalty
κ}s}8Dm1Dm2{n is suitable (see [L3]).

Note on the proof:
As in the independent case, the result is deduced from the control of the deviation of the variable
supt νptq. The goal here is to use the assumption of β-mixing to be reduced to the independent
case. Specifically, we set qn “ r3b´1 logpnqs (where b is defined in Assumption pDβq) and we
perform the Euclidean division of n by qn: n “ dnqn ` rn. For the sake of simplicity, we can
assume that rn “ 0 et dn “ 2pn ą 0 (the other cases being similar). We will group the data by
spaced blocks. For l “ 0, . . . , pn ´ 1, set

Al “ tZiu2lqn`1ďiďp2l`1qqn and Bl “ tZiup2l`1qqn`1ďiďp2l`2qqn .

|
qn

|
2qn

|
3qn

|
4qn

|
5qn

|
6qn

A1
hkkkkkikkkkkj

A2
hkkkkkikkkkkj

A3
hkkkkkikkkkkj

B1

looooomooooon

B2

looooomooooon

B3

looooomooooon

As recalled for instance in Viennet (1997), we can build, for l “ 0, . . . , pn ´ 1,

A‚l “ tZ
‚
i u2lqn`1ďiďp2l`1qqn and B‚l “ tZ

‚
i up2l`1qqn`1ďiďp2l`2qqn

such that, for all l “ 0, . . . , pn ´ 1,
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• Al, A‚l , Bl et B‚l have the same law;

• PspAl ‰ A‚l q ď βZ
qn and PspBl ‰ B‚l q ď βZ

qn ;

• pA‚l q0ďlďpn´1 are independent, as well as pB‚l q0ďlďpn´1.

Thus, it is sufficient to consider Ω‚ “
Şn
i“1tZ

‚
i “ Ziu to be reduced to blocks of independent

variables. Moreover this set has a great probability since

PpΩc
‚q ď 2pnβ

Z
qn ď

n

qn
ae´bqn ď

ab

3

n´2

log n
.

�

Finally, using the dyadic partitions described in Section 2.3.4, we can state the following
result.

Corollary 19. The notation is that of Theorem 18, Assumption pAq is supposed to be fulfilled.
We assume thatM ĂMirreg is defined as previously with the condition

Dm‹ À
?
n{ logpnq.

Assume that s P Bpα, p,8, Rq with p “ 1 or p “ 2, and α P p0, r ` 1q2 such that qpα, pq ą 1.
If logδpnq{n ď R2 ď nqpα,pq´1 logpnqδ´2qpα,pq, then there exists some positive real Cpα, r, pq that
only depends on α, r, p such that

sup
sPBpα,p,Rq

Es
“

}s´ s̃}2n
‰

ď Cpα, r, pq}f}8R
2

ᾱ`1

ˆ

n

logδpnq

˙
´2ᾱ
2ᾱ`2

.

Thus we recover the same rate of estimation as with independent data up to a logarithmic
factor that disappears under Assumptions pDβρq, pDβ2-ρq or pDβcondq.

2.5.2 Extension to censored data

In this section, we will see that the above results extend to the case of right censoring. This
is a model frequently used in reliability or survival analysis where one studies the life (or time
to failure) of individuals. There is right censorship when some individuals in the study are not
observed until the end (death, remission, healing). In this case, we observe only a lower bound
of the life time, the so-called survival time. Finally, the observations consist of the minimum
between life time and censoring time, and the knowledge that it has been censored or not. For
more details on censored models, see Andersen et al. (1993, chap. 3).

We consider the following censoring framework: the observations are pXi, Ti, δiq1ďiďn where

Ti “ minpYi, Ciq, δi “ 1tYiďCiu.

The explanatory variable X is unchanged, and the response Y is censored. The variable C is
the censoring variable, and is assumed to be positive. If Y ą C, we say that the variable Y is
censored, we only observe T “ C and the censoring indicator δ is equal to 0. Otherwise, Y is
not censored and we directly observe T “ Y , the indicator is then δ “ 1. We will work under
the (little strong) assumption that C is independent of pX,Y q, which means that the censorship
happens for external reasons unrelated to X and Y . A second assumption, which is classical
in the censoring framework, is related to the cumulative distribution function G of C and its
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survival function Ḡ “ 1´G.
Assumption (C) The censoring variable C is independent of pX,Y q, and there exists a positive
constant cG such that for all y P r0, 1s, Ḡpyq “ 1´Gpyq ě cG.

Now we adapt our estimation procedure to this new observations context. To do this, we
modify the contrast. We use a standard transformation of the data and introduce an empirical
version of the weights

wi “
δi

ḠpTiq

where Ḡ is the survival function associated with the censoring variables. Indeed

E pwitpXi, Tiq|Xi, Yiq “ E
ˆ

δi
ḠpTiq

tpXi, Tiq|Xi, Yi

˙

“ E
ˆ

1tTi“Yiu

ḠpTiq
tpXi, Tiq|Xi, Yi

˙

“
tpXi, Yiq

ḠpYiq
Ep1tYiďCiu|Xi, Yiq “

tpXi, Yiq

ḠpYiq
ḠpYiq “ tpXi, Yiq.

We would like to use these weights in our procedure by replacing tpXi, Yiq with witpXi, Tiq in
the contrast, but unfortunately Ḡ is unknown. Then we have to estimate it. We denote by ˆ̄G
the Kaplan-Meier estimator of the c.d.f G, modified in the way suggested by Lo et al. (1989),
and defined by

pḠpyq “
ź

Tpiqďy

ˆ

n´ i` 1

n´ i` 2

˙1´δpiq

.

The new contrast is then

γnptq “
1

n

n
ÿ

i“1

ˆ
ż

R
t2pXi, yqdy ´ 2ŵitpXi, Tiq

˙

, ŵi “
δi

pḠpTiq
.

It is the same contrast, replacing tpXi, Tiq with ŵitpXi, Tiq. Note that this contrast coincides with
the previous one if no censoring occurs (Ti “ Yi), by defining the weights ŵi “ 1. The estimator
is the same mutatis mutandis and here we only study the case of global risk and homogeneous
smoothness.

Theorem 20 ([L6]). We assume that pAq, pCq are verified. We assume thatM ĂMreg and

@m PM Dm1 ď
?
n{ logpnq and Dm1Dm2 ď

?
n.

We consider two cases:

• the models are anisotropic and

penpmq “ p1` γq2
}s}8
cG

Dm1Dm2

n
,

• or the models are isotropic: m1 “ m2, Hm1 “ Em1 (i.e. Sm “ Em1 b Em1) and

penpmq “ p1` γq2
p2r ` 1q2

f0
E
ˆ

δ1

Ḡ2pT1q

˙

D2
m1

n
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Then
E}s̃´ s}2n ď C3 inf

mPM

`

d2
f ps, Smq ` penpmq

˘

`
C4

n

where C3 depends on γ, and C4 depends on cG, }s}8, }f}8, f0, r, γ.

The first case is the natural extension of Theorem 7. However, the term cG appears in the
penalty. This term is not easily estimable. That is why we present the second case. Again, there
are additional quantities in the penalty: f0 and Epδ1{Ḡ

2pT1qq but these quantities are estimable.
The estimation of f0 has already been addressed. The term Epδ1{Ḡ

2pT1qq can obviously be
estimated by its empirical counterpart. The price to pay for this more realistic penalty is the
loss of the anisotropic aspect of the procedure: we obtain the rate n´minpαq{p2 minpαq`2q where
minpαq is the worst directional smoothness of s.

2.5.3 Extension to the conditional cumulative distribution function

If we are interested in the conditional distribution, it may be preferred to directly estimate the
conditional cumulative distribution function F px, yq “ PpY ď y|X “ xq rather than the density.
This is particularly the case in reliability or survival analysis, among others, because it appears
in the hazard rate. It is also used to compute the conditional quantiles. This estimation problem
was first studied by Stute (1986) which shows the consistency of a conventional Nadaraya-Watson
estimator. The method is refined by Hall et al. (1999) who also introduce a ratio estimator with
well chosen weights and a bootstrap selection method, numerically studied. Hall and Yao (2005)
proposed to estimate the distribution of Y given X by the one of Y given tθX with an optimized
selection of θ which allows to handle the case of rather large covariate. The case of functional
covariates is treated in Ferraty et al. (2006) and Chagny and Roche (2014). Finally, let us
mention the work of Plancade (2013) that deals with the case of current status data.

We will see that our previous results can be adapted to this estimation issue. But this time,
the adaptive aspect of the procedure is required only in the first direction. It must be well
understood that there is a deep asymmetry between the two directions. In the direction x, one
has to face a nonparametric regression problem. In the direction y, it is about estimation of a
distribution function, which is much easier and is done with the parametric rate 1{n.

The procedure is as above, but we change the contrast. This time, we set

Γnptq “
1

n

n
ÿ

i“1

ż

pt2pXi, yq ´ 2tpXi, yq1tYiďyuqdy.

The expectation can be easily computed:

EpΓnptqq “

ĳ

t2px, yqfpxqdxdy ´ 2

¡

tpx, yq1tzďyuspx, zqfpxqdxdydz

“

ĳ

pt2px, yq ´ 2tpx, yqF px, yqqfpxqdxdy “ }t´ F }2f ´ }F }
2
f .

This quantity being minimum when t “ F , it is natural to minimize Γnptq to estimate F . To
better understand this contrast, we can observe its value when applied to a function t which only
depends on y, and not on x (no covariate). We obtain

Γnptq “
1

n

n
ÿ

i“1

ż

pt2pyq ´ 2tpyq1tYiďyuqdy “

ż

t2pyqdy ´ 2xt, F̂ny “ }t´ F̂n}
2
2 ´ }F̂n}

2
2.
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where F̂n is the empirical cumulative distribution function of the sample pY1, . . . , Ynq. The
minimizer of this contrast on a univariate functions space H is then the projection of F̂n on H,
that we denote PHpF̂nq. We can briefly study the performance of this estimator. Its expectation
is PHpF q. There is therefore a bias variance decomposition:

E}F ´ PHpF̂nq}22 “ }F ´ PHpF q}22 ` E}PHpF q ´ PHpF̂nq}22.

The variance term is bounded by

E}PHpF q ´ PHpF̂nq}22 ď E}F ´ F̂n}22 “
ż 1

0
Var

˜

1

n

n
ÿ

i“1

1Yiďy

¸

dy ď
1

n

and thus does not depend on the dimension of H. The bias term is all the smaller as the
approximation space H is large. We just have to choose H as large as possible to reduce the
bias, and we preserve the (parametric) rate of the empirical c.d.f.. We have just made a smoothing
of F̂n without degrading its rate. In the presence of a covariate X, the approximation space is of
the form S “ E bH where E and H have different roles. As explained, it is sufficient to choose
H large enough, while the model E must be selected from a collection pEm1q in order to balance
the bias and variance in x.

For the sake of simplicity, we assume that the regularity of F is homogeneous. Therefore we
take the simple models described in section 2.3.3. The estimator of the conditional distribution
function is then

F̂m1 “ argmin
tPEm1bHm‹2

Γnptq,

Next, to perform model selection, we set

m̂ “ argmin
m1PM

tΓnpF̂m1q ` penpm1qu

and we denote F̃ “ F̂m̂. Two transformations are added in order to obtain a c.d.f. type estimator:

• firstly, in order to provide a non-decreasing estimate with respect to the y variable, we
apply the rearrangement proposed in Chernozhukov et al. (2009)

F̃ ˚pXi, yq “ inf

"

z P R,
ż

1
tF̃ pXi,uqďzu

du ě y

*

.

• secondly, to obtain a function taking its value between 0 and 1, a truncation is sufficient:

F̆ px, yq “

$

’

&

’

%

F̃ ˚px, yq if 0 ď F̃ ˚px, yq ď 1,

0 if F̃ ˚px, yq ă 0,

1 if F̃ ˚px, yq ą 1.

Theorem 21 ([L8], improved version). We assume that assumption pAq is verified (only the
part on f , no assumption on s),M ĂMreg, and

@m1 PM Dm1 À n{ logpnq.

For a given γ ą 0, we choose

penpm1q “ p1` γq
2Dm1

n
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Then, with probability larger than 1´ C0 expt´plog nq5{4u,

}F̆ ´ F }2n ď inf
m1PM

`

C1d
2
f pF,Em1 bHq ` C2penpm1q

˘

where C1 ą p1` 2γ´1q2, C2 ą 2p1` 2γ´1q and C0 depends on }f}8, f0, r et γ. Moreover

E}F̆ ´ F }2n ď C3 inf
mPM

ˆ

d2
f pF,Em1 bHq `

Dm1

n

˙

`
C4

n

where C3 depends on γ, and C4 depends on }f}8, f0, r et γ.

We can deduce from this theorem the rate of convergence of the risk.

Corollary 22. We assume the same assumptions as in Theorem 21 with penpm1q “ κDm1{n,
and moreover we suppose that F belongs to the anisotropic Besov ball Bpα, 2,8, Rq with smooth-
ness α “ pα1, α2q such that α ą 0 and α2 ě 1. We assume that the models are such that the
maximal degree r of the polynomials is larger than αi ´ 1. Then, if dimpHq ě

?
n,

E}F ´ F̆ }2n ď CR
2

2α1`1n
´

2α1
2α1`1 .

The assumption α2 ě 1 can in fact be weakened to α2 ě αmin, if we merely use a space H
of dimension dimpHq ě n1{p2αminq. The theorem is stated here with this assumption because
we have always assumed the existence of the conditional density s, which corresponds to the
differentiability of F in the second direction.

Thus we obtain the rate n´
2α1

2α1`1 which is the usual rate of convergence for estimating a
univariate function of smoothness α1. Actually this is the optimal rate for our estimation problem
of the conditional distribution function. Indeed, we have the following lower bound result.

Theorem 23 ([L8]). We assume that α2 ą 1. Then for all bounded f , there exists a constant
C ą 0 such that, for n large enough,

inf
F̂n

sup
FPBpα,2,8,Rq

EF,f }F̂n ´ F }22 ě CR
2

2α1`1n
´

2α1
2α1`1

where the infimum is taken over all estimators F̂n of F based on data pX1, Y1q, . . . , pXn, Ynq.

Note that in this case the estimation of the conditional distribution function, we can also
work with censored data and get the same convergence rate by an ad hoc modification of the
contrast and the penalty.

The simulations given in [L8] show that we obtain, on various examples, an oracle constant
Coracle “ E}F ´ F̆ }2{infm1PMn E}F ´ F̂m1}

2 of order 1 or 2. Moreover, we have applied our
conditional distribution estimator to experimental data about the strength of concrete. The
data consisted in couples pxi, yiq for 1 ď i ď 635 where xi is the water-to-cement ratio (kg/m3)
and yi is the concrete compressive strength (MPa).

2.6 Penalty calibration

2.6.1 Calibration for Birgé-Massart model selection

In the previous sections, we have used model selection methodology with penalty of the form
κLmDm{n. In a first time the constant κ in the penalty term can be calibrated using simulations.
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But it is obviously desirable to find a data-driven procedure. In the case of Birgé-Massart model
selection, this procedure exists and is called slope heuristic: it is precisely described in Baudry
et al. (2012). Can this method be applied to conditional density case? We can answer this
question by using the results of Saumard (2012). Let K be the operator defined by

Kptq : px, yq ÞÑ

ż

t2px, uqdu´ 2tpx, yq

and γptq “ ErKptqpX,Y qs. Thus γnptq “ n´1
řn
i“1KptqpXi, Yiq is the empirical version of γptq.

We can prove that this contrast is regular in the sense of Saumard. That is to say that it is C3 in
the sense of Fréchet derivative and associated to an Hilbertian loss function. This entails that,
with probability larger than 1´ Cn´2,

γnpsmq ´ γnpŝmq «
1

4n

Dm1
ÿ

j“1

Dm2
ÿ

k“1

VarpK 1psmqpϕj b ϕkqq « γpŝmq ´ γpsmq.

This result allows us to validate the practical use of slope heuristic. Indeed, if we denote the
best theoretical model

m˚ “ argmin
mPM

}s´ ŝm}
2
f “ argmin

mPM
tγnpŝmq ` pen˚pmqu,

easy computations lead to an optimal penalty pen˚pmq “ pγnpsmq ´ γnpŝmqq`pγpŝmq´γpsmqq`
εn, where εn is a negligible term. Then the previous result gives an optimal penalty equal to
2pγnpŝmq ´ γnpsmqq. Hence we can write

κoptLmDm{n “ 2pγnpŝmq ´ γnpsmqq.

Thus the procedure is as follows: detect a linear relationship between γnpŝmq and LmDm{n,
record the slope, and take κopt equal to two times this slope. This methodology has been
implemented in other frameworks by Baudry et al. (2012) in the toolbox CAPUSHE (Matlab
and R).

2.6.2 Calibration for Goldenshluger-Lespki method

In this section, I would like to address more precisely the issue of penalty calibration for the
Goldenshluger-Lepski methodology. We focus on the calibration of the penalty term V or σ “?
V . It is known that the method achieves good results for V large enough. But what is the

minimal (and the optimal) value for V to keep this good behavior? In this section we deal with
the case of simple density estimation (instead of conditional density). We consider this issue
from a theoretical point of view but actually it is decisive for a practical implementation of
the method. Our contribution is to evidence an explosion phenomenon: if the penalty term V
is chosen smaller than some critical V0, the risk is proven to dramatically increase, though for
V ą V0 this risk is quasi-optimal. Proofs are extensively based on concentration inequalities.
In particular, left tail concentration inequalities are used to prove the explosion result. We also
implement numerical simulations which corroborate this behavior.

Kernel density estimation framework In this section, we consider the simpler framework
of independent and identically distributed real variables X1, . . . , Xn with unknown density f .
For h a bandwidth we can define the classical kernel estimator

f̂hpxq “
1

n

n
ÿ

i“1

Khpx´Xiq
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where K is a kernel and Kh “ Kp.{hq{h. We assume here that the function to estimate is
univariate and we study the Goldenshluger-Lepski methodology without oversmoothing. That
is to say that we do not use auxiliary estimators. Indeed, this is not the heart of the method,
and only induces slight changes in the bias term in our context. From tf̂h, h P Hu the collection
of estimators, the procedure is the following. The bias is estimated by

Aphq “ sup
h1ďh

”

}f̂h1 ´ f̂h}
2
2 ´ V ph

1q

ı

`
with V ph1q “ a

}Kh1}
2
2

n
(11)

and the selected bandwidth is

ĥ “ arg min
hPH

tAphq ` V phqu .

We introduce the following notation:

fh :“ Epf̂hq, hmin :“ minH, hmax :“ maxH
Dphq :“ maxpsup

h1ďh
}fh1 ´ fh}2, }f ´ fh}2q ď 2 sup

h1ďh
}fh1 ´ f}2.

We assume that the kernel verifies assumption
ż

|K| “ 1, }K}2 ă 8 and @ 0 ď x ď 1
xK,Kpx.qy

}K}22
ě 1.

This is verified for classical kernels (Gaussian kernel, rectangular kernel, Epanechnikov kernel,
biweight kernel; see [L17]). This entails that for all h1 ď h, }Kh1 ´Kh}

2
2 ď }Kh1}

2
2´}Kh}

2
2 which

is a key property for our results.
Let us now recall what can be obtained if a is well chosen. Assume that f is bounded and

h´1
max ď

?
n. Then, if a ą 1, there exists a positive C “ CpK, fq such that

E}f̂ĥ ´ f}
2
2 ď 2

ˆ

3a´ 1

a´ 1

˙2

inf
hPH

"

D2phq ` a
}Kh}

2
2

n

*

` C
|H|2

hmin
e´

p1´a´1q2

Chmax .

For H “ te´k, r2 log log ns ď k ď tlog nuu, the remaining term is bounded by e´p1´a´1q2plognq2{C1

(see [L17]). We recognize in the right members the classical bias variance trade-off. This oracle
inequality shows that the Goldenshluger-Lepski methodology works when a ą 1. Here a is the
constant in the penalty that we need to calibrate.

Minimal penalty Now we are interested in finding a minimal penalty V phq, beyond which
the procedure fails. Indeed, if a and then V phq is too small, the minimization of the criterion
amounts to minimize the bias, and then to choose the smallest possible bandwidth. This leads
to the worst estimator and the risk explodes.

In the following result hmin denotes the smallest bandwidth in H and is of order 1{n.

Theorem 24 ([L17]). Assume that f is bounded. Choose H “ te´k, r2 log log ns ď k ď tlog nuu

as a set of bandwidths. Consider for K the Gaussian kernel, the rectangular kernel, the Epanech-
nikov kernel or the biweight kernel. If a ă 1 where a is defined in (11), then, for n large enough
(depending on f and K), the selected bandwidth ĥ satisfies

DC ą 0 Ppĥ ě 3hminq ď Cplog nq2 expp´plog nq2{Cq

i.e. ĥ ă 3hmin with high probability. Moreover

lim inf
nÑ8

E}f ´ f̂ĥ}
2
2 ą 0
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Note on the proof:
The heart of the proof is to control the deviations of Sph, h1q “ n´1

řn
i“1pKh1 ´Khqpx´Xiq ´

EppKh1 ´Khqpx´Xiqq, and we prove that with high probability

p1´ εq
}Kh1 ´Kh}2

?
n

ď }Sph, h1q}2 ď p1` εq
}Kh1 ´Kh}2

?
n

.

To do this we use here deviation in both sides, as cited in Lemma 1. Using this control, we can
evaluate the precise behavior of Aphq and then ĥ. �

This theorem is proved in [L17] for more general kernels and bandwidth sets. It ensures that
the critical value for the parameter a is 1. Beyond this value, the selected bandwidth ĥ is of
order 1{n, which is very small (remember that for minimax study of a density with regularity α,
the optimal bandwidth is n´1{p2α`1q), then the risk cannot tend to 0.

Simulations and discussion Let us now illustrate the role of tuning parameter a, the constant
in the penalty term V . The aim is to observe the evolution of the risk for various values of a.
Is the critical value a “ 1 observable in practice? To do this, we simulate data X1, . . . , Xn for
several densities f . Next, for a grid of values for a, we compute the selected bandwidth ĥ, the
estimator f̂ĥ and the integrated risk }f̂ĥ ´ f}

2
2.
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Figure 6: Plots of true density f for Examples 4–6

We consider the following examples, see Figure 6:

Example 1: f is the Cauchy density

Example 2: f is the uniform density Up0, 1q

Example 3: f is the exponential density Ep1q

Example 4: f is a mixture of two normal densities 1
2N p0, 1q `

1
2N p3, 9q

Example 5: f is a mixture of normal densities sometimes called Claw

Example 6: f is a mixture of eight uniform densities

We implement the method for various kernels, but we only present results for Gaussian kernel,
since the choice of kernel does not modify the results. On the other hand, the method is sensitive
to the choice of bandwidths set H: here we use

H “ te´k, 3 ď k ď 10u Y t0.002` k ˆ 0.02, 0 ď k ď 24u.
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For n “ 5000 and n “ 50000, and several values of a, the Figure 7 plots

C0 “ Ẽ
}f̂ĥ ´ f}

2
2

minhPH }f̂h ´ f}
2
2

where Ẽ means the empirical mean on N “ 50 experiments. Thus smaller C0 better the esti-
mation. Moreover, we also plot on Figure 8 the selected bandwidth compared to the optimal
bandwidth in the selection (for N “ 1 experiment), i.e.

ĥ´ h0 where }f̂h0 ´ f}
2
2 “ min

hPH
}f̂h ´ f}

2
2.
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Figure 7: Oracle constant C0 as a function of a, for Examples 1–6
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Figure 8: ĥ´ h0 as a function of a, for Examples 1–6

We can observe that the risk (and then the oracle constant C0) is very high for small values
of a, as expected. Then it jumps to a small value, that indicates the method begins to work
well. For too large values of a the risk finally goes back up. Thus we observe in practice what
was announced by the theory. Notice that the theory is asymptotic. That is why in practice,
the jump may be not exactly at a “ 1, especially for small values of n. For irregular densities
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(examples 2, 5, 6), the optimal bandwidth is very low, then it is consistent to observe a smaller
jump for the bandwidth choice. However the jump does exist and this is the interesting point.

To precisely calibrate the penalty V , we face a practical problem: just before a “ 1, the risk
explodes, and just after the result is optimal. Then we could consider another procedure:

Aphq “ sup
h1ďh

„

}f̂h1 ´ f̂h}
2
2 ´ a

}Kh1}
2
2

n



`

,

ĥ “ arg min
hPH

"

Aphq ` b
}Kh}

2
2

n

*

.

with b ‰ a (here we just study the case a “ b). The distinction between a and b could enable
a best calibration. Preliminary computations indicate that a “ 1 and b “ 2 may be optimal.
A good track for practical purpose seems to use the procedure of Section 2.6.2 to find a0 where
there is a jump in the risk: a0 “ 1 in the theory but could be slightly different in practice
(simulations show that this jump is very perceptible), and then to choose b “ 2a0.

2.7 Some prospects

Several prospects are natural in the area of conditional density estimation. Inference on condi-
tional distribution could be completed by the study of confidence bands, in the spirit of Giné
and Nickl (2010). Even more recently, models of privacy have been introduced, in which data
remain private even from the statistician, see for example Duchi et al. (2014). Nonparametric
estimation of the conditional density in this framework could be a challenging task. In a more
classic way, data are generally spoiled by a noise and are not directly workable: estimation for
conditional law could be more realistic in this context.

However the most promising research direction is the one of the great dimension. That is
why I have proposed with Vincent Rivoirard a PhD project starting in September 2015.

2.7.1 Conditional distribution in large dimension: PhD project

In Section 2.4, we have seen the interest of conditional density estimation for ABC methods.
However, our procedure suffers from the curse of dimensionality and is not very adapted for
dimensions greater than 2 or 3. The aim of this thesis project is then to propose an alternative
to classical ABC methods, combining the sharpness of nonparametric kernel methods and the
speed of greedy algorithms. Several goals are pursued: an automatic calibration of the procedure
leading to an easy use for practitioners, a reasonable running time when the dimension of the
conditional distributions is of order a few tens, and the theoretical validation of the implemented
procedures via oracle or minimax approaches.

We consider again the issue of estimating a conditional density. To do this, we assume that
we are given a n-sample pXi, Yiq1ďiďn of couples of random vectors with respective dimensions
d1 and d2. We denote by sp¨, xq the conditional density of Yi given Xi “ x, to estimate. The
fundamental assumption that we propose (in order to avoid the curse of dimensionality) is that
the function s depends only on a small number of variables k ă d :“ d1`d2. Formally, this means
that there exists an unknown set I with cardinality k such that, for all vector u “ px, yq P Rd
with u “ px1, . . . , xd1 , y1 . . . , yd2q

spuq “ spuIq,

where uI “ puj : j P Iq. This assumption of sparsity is less restrictive than the structural
constraints proposed by Raskutti et al. (2012) or Bouaziz and Lopez (2010) and we expect a
benefit in term of estimation rate, if we achieve a good inference for the set I.
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The first goal of this thesis is to develop a greedy algorithm to infer pI, fq. Greedy algorithms
are studied since several decades in signal processing and approximation theory (Davis et al.,
1997; Tropp, 2004). Their use in statistics is more recent (Barron et al., 2008; Lafferty and
Wasserman, 2008, 2007). In this area, they are used for variable selection issues, where each step
of the algorithm proposes a decision rule for the inclusion or not of a new variable. In a second
step, this new estimator could be applied to real data, interacting with population geneticists,
with a comparison with current ABC methods. From the mathematical point of view, it would
be interesting to reconsider the theoretical contributions of other variable selection methods
(Bertin and Lecué, 2008; Comminges and Dalalyan, 2012) in the framework of conditional density
estimation. Finally, other related statistical issues can be considered. For instance, we may want
to estimate the set I in a very large dimension (which can possibly depend on n, polynomially
or exponentially). In this case, we shall try to provide a multiple testing procedure, based on
test statistics taken from the previous estimation work.

2.7.2 Calibration

In the more general context of adaptive estimation, there remain a lot of issues: see the open
problems listed in Lepski (2014). In particular, it remains difficult to find optimally-adaptive
estimator whose construction is computationally reasonable. In the line of Section 2.6.2, I would
like to keep exploring the Goldenshluger-Lepski method in the framework of density estimation.
A collaboration with Pascal Massart and Vincent Rivoirard has already started to study this
topic. We consider the asymmetric procedure:

Aphq “ sup
h1ďh

„

}f̂h1 ´ f̂h}
2
2 ´ a

}Kh1}
2
2

n



`

,

ĥ “ arg min
hPH

"

Aphq ` b
}Kh}

2
2

n

*

.

with b ‰ a. This distinction between a and b may seem slight, but it makes appear very different
behavior of the estimator, both theoretically and practically. In this framework, finding minimal
and optimal penalty is a challenge. One can also consider a more refined penalty, which should
depend on h and h1 instead of only h. Other important investigations include the multivariate
case and the use of diverse loss functions.
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Chapter 3

Indirect observations models

3.1 Deconvolution on Rd

3.1.1 Context

Model The so-called convolution model is the following one:

Yi “ Xi ` εi, i “ 1, . . . , n,

where pεiq and pXiq are two independent sequences of i.i.d. variables. The aim is to estimate
the density f of the signal Xi when only the noised variables Yi are observed. Since in this case

fY “ f ‹ fε “

ż

fp.´ uqfεpuqdu,

this issue is named deconvolution. Motivations and applications for this problem are numerous.
On can cite:

• analysis of DNA content obtained by microfluorometry (Mendelsohn and Rice, 1982),

• intensity of a probe in genome-wide microarrays (Plancade et al., 2012),

• in astrophysics, density of metallicities of F and G dwarfs (Bissantz et al., 2007),

• in medical statistics: measures of peak expiratory flow rate, or the ventricule-brain ratio
(Delaigle et al., 2008); health effects of radiation exposure (Stefanski and Carroll, 1990);
estimation of onset of pregnancy (Comte et al., 2014),

• other applications in econometrics, medicine or astronomy can be found in Meister (2009)
and Stefanski and Carroll (1990).

This model is closely linked with the regression with errors-in-variables, that we shall not
evoke here. Another related model is the so-called Inverse Problem. Indeed, denoting A : f ÞÑ

f ‹ Fε and Un “
?
np{pFY qn ´ FY q, we can write {pFY qn “ Af ` 1?

n
Un, where Un is an empirical

process which converges to a Brownian bridge BFY ptq. However this link is rather artificial and
actually inverse problems are about regression when deconvolution is about density estimation.

Note that without additional assumption, this problem is not identifiable. The classical way
to make the problem identifiable is to assume that the distribution of the noise ε is known.
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Main references There have been a lot of studies dedicated to the problem of recovering
the distribution f of a signal when it is measured with an additive noise with known density.
See Carroll and Hall (1988), Devroye (1989), Liu and Taylor (1989), Masry (1991), Stefanski
and Carroll (1990), Zhang (1990), Hesse (1999), Cator (2001), Delaigle and Gijbels (2004) for
mainly kernel methods, Koo (1999) for a spline method, Pensky and Vidakovic (1999) for wavelet
strategies, and Comte et al. (2006) for adaptive projection strategies. Efromovich (1997) and
Goldenshluger (2002) study the case of circular data. The book of Meister (2009) reviews the
issue of deconvolution. The question of the optimality of the rates revealed real difficulties, after
the somehow classical cases studied by Fan (1991) and the case of logarithmic rates studied
by Goldenshluger (1999). The case of supersmooth noise (i.e. with exponential decay of its
characteristic function) in presence of possibly also supersmooth density implies non standard
bias variance compromises that require new methods for proving lower bounds. These problems
have been studied by Butucea (2004), Butucea and Tsybakov (2007, 2008), [L1] and by Butucea
and Comte (2009). See also Li and Liu (2014) for Lp-risk. Recent advances concern uniform risk
and confidence bands: see Lounici and Nickl (2011) and Bissantz et al. (2007).

Other estimation problems in the convolution model The issue of change-point estima-
tion in this context of noisy observations has been addressed by Neumann (1997b) and Golden-
shluger et al. (2006), when Schmidt-Hieber et al. (2013) are interested in detecting qualitative
features of the unknown density, for example testing for local monotonicity. In Chesneau (2011),
f is assumed to be a mixture with unknown components. Chesneau et al. (2015) deal with the
estimation of the l-fold convolution f‹plq in the convolution model.

More important is the issue of estimating the cumulative distribution function. This problem
has been studied by Hall and Lahiri (2008), Dattner et al. (2011), Söhl and Trabs (2012), Dattner
and Reiser (2013). See also Dattner et al. (2013) for quantile estimation. The distribution
measure of X is also estimated with a Wasserstein control in Dedecker et al. (2015) and references
therein.

Particular cases of noise modelization In the main references, it is always assumed that
the characteristic function of the noise never vanishes. But new directions lead researchers to
release this assumption: see Hall and Meister (2007); Meister (2008). Deconvolution when the
noise is uniform is studied in van Es (2011) and Feuerverger et al. (2008). See also Abbaszadeh
et al. (2013) for uniform multiplicative noise. Deconvolution when the noise is Laplace or Gamma
is studied in van Es and Kok (1998), and Gaussian deconvolution is addressed in Masry and Rice
(1992). In Mabon (2015), both random variables X and ε are assumed nonnegative.

Partly known noise It turns out that the knowledge of the error distribution is often an
unrealistic assumption. Then it is important to relax this assumption, at least partially. A
popular deconvolution procedure, the so-called SIMEX estimator only requires the knowledge of
order-two-moments of the noise, see Stefanski and Cook (1995). See also Meister (2004), who
studied the effect of misspecifying the error density.

Several authors consider a semiparametric approach for the case of normal error distribution
with unknown variance : Matias (2002), Meister (2006), Schwarz and Van Bellegem (2010). In
the papers of Butucea and Matias (2005), Butucea et al. (2008) and Meister (2006) this model
is considered under the assumption that the Fourier transform of f has a specific known positive
lower bound, so that f is finally identifiable. Meister (2007) establishes consistency in a model
where f is compactly supported, and the noise characteristic function has to be known on some
bounded interval.
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Other models with supplementary observations Sometimes, the problem of unknown
noise density can be circumvented by repeated observations of the same variable of interest, each
time with an independent error. This is the model of panel data, see for example Li and Vuong
(1998), Delaigle et al. (2008), Neumann (2007) or Comte and Samson (2012). Another model of
double measurement is proposed in Meister et al. (2010).

In physical contexts, it is often possible to obtain samples of noise alone. This is this point
of view which is considered in our Section 3.1.3 (see references therein).

Rates of convergence for classical deconvolution Now let us present the classical results
for univariate deconvolution. In classical deconvolution, Fourier analysis is used to write:

f˚Y ptq “ EreitY s “ EreitXsEreitεs “ f˚ptqf˚ε ptq

and f˚Y ptq “ EreitY s can be estimated by its empirical version. Then the inverse of the char-
acteristic function of the noise plays a crucial role. When this characteristic function decreases
with an exponential rate, as in the normal case (or Cauchy distribution), the deconvolution is
particularly hard, and the rate of convergence suffer these effects. By the way it is a classical way
to smooth a function: to convolve it with a normal density. The initial function is then difficult
to retrieve after this smoothing. When the noise is less regular, with a polynomial decrease of the
Fourier transform (e.g. Laplace, Gamma distributions) the reconstruction is easier. Then the
rates of convergence for the problem of estimating f are different according to whether the noise
is “supersmooth” (exponential decrease of the characteristic function, denoted SS) or “ordinary
smooth” (polynomial decrease of the characteristic function, denoted OS). In the same way, the
target f can be assumed to be supersmooth or ordinary smooth. Then it is now well-known that
the rates of convergence for the problem of deconvolution in R are the following:

noise OS noise SS

f OS n´♦ plog nq´M

f SS
plog nqO

n

plog nqO

n
ă . ă plog nqM

We do not give rates in the case where both functions can be supersmooth, because it is
very intricate. General formula in dimension 1 are given in [L1], see also Butucea and Tsy-
bakov (2007, 2008). For example, if the signal is N p0, σ2q and the noise N p0, σ2

εq, the rate is
n´1{p1`θ2qrlogpnqs´p1`1{p1`θ2qq{2 with θ2 “ σ2

ε{σ
2. We can just emphasize that in such case the

rates can be considerably improved, compared to the logarithmic issue above.

Notation In the sequel, we denote by g˚ the Fourier transform of an integrable function g,
g˚ptq “

ş

eixt,xygpxqdx where xt, xy “
řd
j“1 tjxj is the standard scalar product in Rd. Moreover

the convolution product of two functions g1 and g2 is denoted by g1 ‹ g2pxq “
ş

g1px´uqg2puqdu.
We recall that pg1 ‹ g2q

˚ “ g˚1g
˚
2 . As usual, we define

}g}1 “

ż

|gpxq|dx and }g} “ }g}2 “

ˆ
ż

|gpxq|2dx

˙1{2

.

47



The notation x` means maxpx, 0q, and a ď b for a, b P Rd means a1 ď b1, . . . , ad ď bd. For two
functions u, v, we denote upxq À vpxq if there exists a positive constant C not depending on x
such that upxq ď Cvpxq and upxq « vpxq if upxq À vpxq and vpxq À upxq.

3.1.2 Multivariate deconvolution

We consider the following d-dimensional convolution model

Yi “

¨

˚

˝

Yi,1
...
Yi,d

˛

‹

‚

“ Xi ` εi “

¨

˚

˝

Xi,1
...
Xi,d

˛

‹

‚

`

¨

˚

˝

εi,1
...
εi,d

˛

‹

‚

, i “ 1, . . . , n. (12)

We assume that the εi’s and the Xi’s are i.i.d. and the two sequences are independent. Only
the Yi’s are observed and our aim is to estimate the density f of X1 when the density fε of ε is
known.

Almost all previous works are in one dimensional setting. Our aim here is to study the mul-
tidimensional setting, and to propose adaptive strategies that would take into account possible
anisotropy for both the function to estimate and the noise structure. Few papers study the mul-
tidimensional deconvolution problem; we can only mention Masry (1991, 2003) who considers
mainly the problem of dependency between the variables without anisotropy nor adaptation,
and Youndjé and Wells (2008) who consider a cross-validation method for bandwidth selection
in an isotropic and ordinary smooth setting. Our work considerably generalizes their results
with a different method, and provides new results and new rates in both pointwise and global
setting. We have to mention also Dedecker and Michel (2013) who estimate geometric features
of the distribution of Xi which is assumed to be supported on an unknown compact subset G
of Rd. As already explained in Kerkyacharian et al. (2001), adaptive procedures are delicate
in a multidimensional setting because of the lack of natural ordering. For instance, the model
selection method is difficult to apply here since it requires to bound terms on sums of anisotropic
models. Here we use the Goldenshluger-Lepski methodology to face anisotropy problems, with
the use of Talagrand inequality as the key of the deviation.

The estimator Let us now define our collection of estimators. It easily follows from Model
(12) and independence assumptions that, if fY denotes the common density of the Yj ’s, then
fY “ f ‹ fε and thus f˚Y “ f˚f˚ε . Note that this basic equality can be obtained for a noise with
discrete distribution, and the whole method can be generalized to that case. Therefore, under
the classical assumption:
Assumption (E) @x P R, f˚ε pxq ‰ 0

the equality f˚ “ f˚Y {f
˚
ε yields an estimator of f˚ by considering the following estimate of

f˚Y :

xf˚Y ptq “
1

n

n
ÿ

k“1

eixt,Yky.

Then, we should use inverse Fourier transform to get an estimate of f . As 1{f˚ε is in general
not integrable (consider a Gaussian density for instance), this inverse Fourier transform does not
exist, and a smoother is used. Let K be a kernel in L2pRdq such that K˚ exists. Then we define,
for h P pR˚`qd,

Khpxq “
1

h1 . . . hd
K

ˆ

x1

h1
, . . . ,

xd
hd

˙

and L˚phqptq “
K˚
hptq

f˚ε ptq
.
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The kernel K is such that Fourier inversion can be applied:

Lphqpxq “ p2πq
´d

ż

e´ixt,xy
K˚
hptq

f˚ε ptq
dt,

A natural estimator of f is such that

f̂˚h ptq “ K˚
hptq

xf˚Y ptq

f˚ε ptq
“ xf˚Y ptqL

˚
phqptq,

since, under (E), f˚ε does not vanish, and thus, by Fourier inversion,

f̂hpxq “
1

n

n
ÿ

k“1

Lphqpx´ Ykq.

For the estimators to be correctly defined, the kernel must be chosen sufficiently regular to
recover integrability in spite of the noise density. In this dissertation, we simply use the sinus
cardinal kernel denoted by K “ sinc and defined by Kptq “ K1pt1q . . .Kdptdq with

K˚
j ptq “ 1r´1,1sptq ô Kjpxq “

sinpxq

πx

ˆ

Kjp0q “
1

π

˙

.

But many other kernels are possible: see [L12].

Study of the integrated risk A usual, the integrated risk can be decomposed in a bias
term plus a variance term: E}f̂h ´ f}2 “ B2phq ` V phq. Let us first study the variance. A
straightforward computation gives

V phq :“ E}f̂h ´ Epf̂hq}2
Parseval
“

1

p2πqd
E
ż

|f̂˚h ´ Epf̂˚h q|2 “
1

p2πqd

ż

Varpf̂˚h q

“
1

p2πqd

ż

Var

ˆ

K˚
h

f˚ε
xf˚Y

˙

“
1

p2πqdn

ż

Var

ˆ

K˚
h

f˚ε
eixu,Y1y

˙

ď
1

p2πqdn

›

›

›

›

K˚
h

f˚ε

›

›

›

›

2

.

To understand the behavior of this quantity, it is necessary to make assumptions on the noise.
We assume that the characteristic function of the noise has a polynomial or exponential decrease.
We denote by OS (for ordinary smooth) the set of directions j with ordinary smooth regularity
and by SS (for supersmooth) the set of directions j with supersmooth regularity. Thus we
suppose that

|f˚ε ptq| «
ź

jPOS

pt2j ` 1q´βj{2
ź

kPSS

pt2k ` 1q´βk{2 expp´αk|tk|
ρkq.

With this hypothesis V phq À 1
n

śd
j“1 h

´1´2βj`ρj
j expp2αjh

´ρj
j q. It means that, when hÑ 0, the

variance grows polynomially for OS noise components and exponentially for SS noise compo-
nents.

Let us now study the bias term. The estimator verifies

Epf̂˚h ptqq “ K˚
hptq

f˚Y ptq

f˚ε ptq
“ K˚

hptqf
˚ptq “ pKh ‹ fq

˚ptq

so that Bphq :“ }f ´ Epf̂hq} “ }f ´ Kh ‹ f}. To express the regularity of the target f , we
shall consider general anisotropic Sobolev spaces Spb, a, r, Lq defined as the class of integrable
functions f : Rd Ñ R satisfying

d
ÿ

j“1

ż

|f˚pt1, . . . , tdq|
2p1` t2j q

bj expp2aj |tj |
rj qdt1 . . . dtd ď L2,
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for aj ě 0, rj ě 0, bj P R (bj ą 1{2 if rj “ 0), when j “ 1, . . . , d. If some aj are nonzero, the
corresponding directions are associated with so-called supersmooth regularities. The spaces of
ordinary smooth functions correspond to classic Sobolev classes, while supersmooth functions are
infinitely differentiable. It includes for example normal (rj “ 2) and Cauchy (rj “ 1) densities.
Notice that in [L12], we also consider other function spaces (Hölder and Nikolski). We obtain
for such a function Bphq À L

řd
j“1 h

bj
j expp´ajh

´rj
j q and then

E}f̂h ´ f}2 À L2
d
ÿ

j“1

h
2bj
j expp´2ajh

´rj
j q `

1

n

d
ź

j“1

h
´1´2βj`ρj
j expp2αjh

´ρj
j q.

It appears that the bias-variance balance is very complex and depends on the behavior of each
coordinate of the noise and the signal.

Rates of convergence To understand the diversity of possible rates, let us first present some
examples.

Example 1 - Cauchy distribution: fpx, yq “ pπ2p1` x2qp1` y2qq´1 with a Laplace/Laplace noise, i.e.

fεpx, yq “
λ2

4
e´λ|x|e´λ|y|; f˚ε px, yq “

λ2

λ2 ` x2

λ2

λ2 ` y2
.

The smoothness parameters are b1 “ b2 “ 0, r1 “ r2 “ 1, β1 “ β2 “ 2 and ρ1 “ ρ2 “ 0.
For this example, we can compute that the rate is upperbounded by plogpnqq10{n.

Example 2 - Mixed Gaussian distribution: Xi,1 “W {
?

7 withW „ 0.4N p0, 1q`0.6N p5, 1q, and Xi,2 in-
dependent with distributionN p0, 1q. We consider that the noise follows a Laplace/Gaussian
distribution, i.e.

fεpx, yq “
λ

2
e´λ|x|

1

µ
?

2π
e´y

2{p2µ2q; f˚ε px, yq “
λ2

λ2 ` x2
e´µ

2y2{2.

The smoothness parameters are b1 “ b2 “ 0, r1 “ r2 “ 2, β1 “ 2, β2 “ 0 and ρ1 “ 0,
α2 “ µ2{2, ρ2 “ 2. Here the rate of convergence is n´16{17rlogpnqs63{34 for the bandwidths
h´1

1 “
a

7 logpnq and h´1
2 “

a

16 logpnq ´ 40 logplogpnqq{
?

17.

Example 3 - Gamma distribution: Xi,1 „ Γp5, 1{
?

5q and Xi,2 „ Γp5, 1{
?

5q. We estimate the density
on r0, 8s2. The noise follows a Gaussian/Gaussian distribution, i.e.

fεpx, yq “
1

2πµ2
e´px

2`y2q{p2µ2q; f˚ε px, yq “ e´µ
2px2`y2q{2.

So b1 “ b2 “ 5, r1 “ r2 “ 0, β1 “ β2 “ 0, α1 “ α2 “ µ2{2 and ρ1 “ ρ2 “ 2. This is an
example with integrated rate plogpnqq´9{2 (which is not so large for practical values of n,
for instance, for n “ 1000, this term is smaller than 1{n).

General detailed rates of convergences are given in [L12]. Since they are very intricate, we
just give here the major conclusions. We call “homogeneous” the cases where all components
have the same behavior, and “mixed cases” otherwise.

• For homogeneous cases, we obtain natural extensions of the univariate rates, and in par-
ticular the important fact that the rates can be logarithmic if the noise is SS (for instance
in the Gaussian case) but are much improved if the signal is also SS: for instance, if the
signal is also Gaussian, then polynomial rates are recovered.
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• We obtain surprising results in the mixed cases: if one component only of the noise is SS (all
the others being OS), in presence of an OS signal, then the rate of convergence of the esti-
mator is logarithmic. In this case, no bandwidth selection is required. Indeed, we just have
to take hj “ plogpnq{2αjq

´1{ρj for the supersmooth components and hj “ n´1{p2dp2βj`1qq

for ordinary smooth components, and the rate has a logarithmic order determined by the
bias term.

• On the contrary, if the signal has k out of d components SS in presence of an OS noise,
then the rate of the estimator is almost as good as if the dimension of the problem was
d´ k instead of d.

To get a validation of our method, we have proved lower bounds for the rates computed
above, at least in part of the cases. In particular, we can extend the results of Fan (1991) and
of Butucea and Tsybakov (2008) to the multivariate setting. Our assumption is the following:
Assumption (Hε) We assume that the noise has its components independent. We also
assume that, for j “ 1, . . . , d, and for almost all uj in R, f˚ε1,j pujq admits a derivative and
|uj |

β1j exppαj |uj |
ρj q|pf˚ε1,j q

1pujq| is bounded, for a constant β1j such that β1j ą βj if ε1,j is OS.
If the signal f verifies 1 ď rj ă 2, we assume that f˚ε1,j pujq admits in addition a second order
derivative for almost all uj in R such that |uj |β

2
j exppαj |uj |

ρj q|pf˚ε1,j q
2pujq| is bounded, with β2j

a positive constant.

Theorem 25 ([L12]). Under assumption (E) and (Hε), consider the following cases:

Case A All the the components of ε are ordinary smooth and, for the signal: rj ă 2, or

Case B There exists at least one component of ε which is supersmooth and the signal is ordinary
smooth (all rj “ 0)

Then for any estimator f̂n, and for n large enough,

sup
f

Ef
”

}f̂n ´ f}
2
ı

Á ψn

where ψn are the previously described rates.

Note on the proof:
This result is not straightforward and requires specific constructions, since it captures mixed
cases which could not be encountered in univariate setting. We need to define a collection of
alternatives pfθqθ in case A, and a single alternative in case B. If H denotes a specific kernel
function and gs the symmetric stable law with characteristic function g˚s puq “ expp´|u|sq, we
introduce f0pxq “

śd
j“1

1
cj
gsj

´

xj
cj

¯

with cj positive constants large enough and sj ą rj . Then we
build alternative functions far from f0 in L2 distance but with close corresponding likelihoods.
We take in case A densities of the form

fθpxq “ f0pxq ` c
a

V phnq
ÿ

kPK
θk

d
ź

j“1

H

ˆ

xj ´ xnkj
2hn,j

˙

and in case B

f1pxq “ f0pxq ` c
d
ÿ

j“1

h
bj´1{2
n,j H

ˆ

xj
hn,j

˙

ź

1ďiďd, i‰j

Hpxiq.
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Note that our condition on the noise improves Fan (1991)’s conditions: in the OS case, Fan
requires a second order derivative of f˚ε and in the SS case, he gives a technical condition which
is difficult to link with the functions at hand. The improvement took inspiration in the book of
Meister (2009) who also had first order type conditions. �

We therefore conclude that the rates reached by our estimators for estimating an ordinary
smooth function are optimal. We also have optimality in the case of a supersmooth function f
with rj ă 2 and ordinary smooth noise.

Adaptation As the bandwidth choice is very difficult to describe in the general case, this
enhances the interest of automatic adaptation which is proposed below. In spite of the difficulty
of the problem, in particular because of the large number of parameters required to formalize
the regularity indexes of the functions, we exhibit very synthetic penalties than can be used in
all cases.

We use the Goldenshluger-Lepski method. We introduce auxiliary estimators f̂h,h1 “ Kh1 ‹ f̂h
and a penalty Ṽ phq “ cCphqV phq where Cphq a corrective term to be defined later. The estimator
f̃ “ f̂ĥ is defined by

Aphq “ suph1PH

„

}f̂h1 ´ f̂h,h1} ´
b

Ṽ ph1q



`

ĥ “ arg minhPH

"

Aphq `
b

Ṽ phq

*

where H is the set of bandwidth to be defined later. We obtain the result

Theorem 26 ([L12]). Under assumption (E), if we choose

H “ thpkq, Cphqmaxp1, }K˚
h{f

˚
ε }

2
2{}K

˚
h{f

˚
ε }

2
8q ě plog nq2,

V phpkqq ď 1 for k “ 1, . . . , tnεuu.

then, with probability larger than 1´ nεe´Kplognq2

}f̃ ´ f} ď 3 inf
hPH

"

Bphq `

b

Ṽ phq

*

.

Moreover
Ep}f̃ ´ f}q ď 3 inf

hPH

"

Bphq `

b

Ṽ phq

*

`
C
?
n
.

The bias-variance trade-off is then achieved as soon as Ṽ phq „ V phq, i.e. when the corrective
Cphq is close to 1. To choose Cphq, we have to consider that the optimal rate of convergence
will be obtained only if the optimal bandwidth hopt P H. The question is then: is it possible to
choose Cphq close to 1 and to have hopt P H? To give the answer, we have to distinguish two
cases:

f ordinary smooth In we know that we are in this case, and if there exists a supersmooth
component in the noise (case of very low rates), then hopt P H does not depend on f , then
an adaptive procedure is useless. If all the components are ordinary smooth, then one can
take Cphq “ 1 and hopt P H. So the optimal rates are achieved.

f supersmooth In all cases, a corrective Cphq “ plog nq2 will always work. It implies a rate
spoiled with a plog nq2 (which is negligible). For the mean oracle inequality, we can even
take a Cphq smaller which leads to an optimal rate if the noise is ordinary smooth or weakly
supersmooth, see [L12].
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Remark on the pointwise risk The pointwise risk of the same estimator can be pre-
cisely studied. Both bias and variance are slightly modified, that leads to different but sim-
ilar rates of convergence, see [L12]. To build an adaptive estimator we define in this case
Ṽ0phq “ c0 logpnqV0phq where V0phq is the variance of estimator f̂h at given point x0. We
also set

A0ph, x0q “ sup
h1PH0

„

|f̂h1px0q ´ f̂h,h1px0q| ´

b

Ṽ0ph1q



`

, ĥpx0q “ arg min
hPH0

"

A0ph, x0q `

b

Ṽ0phq

*

and the final estimator is f̃px0q “ f̂ĥpx0q
px0q. With this procedure, we obtain both trajectorial

and mean oracle inequalities, similar to Theorem 26, with a corrective term always equal to
logpnq. This always leads to the optimal rates with respect to a sample size n{ logpnq.
This logarithmic loss, due to adaptation, is known to be nevertheless adaptive optimal for d “ 1,
see Butucea and Tsybakov (2007, 2008) and Butucea and Comte (2009), and we can conjecture
that it is also the case for larger dimension.

Numerical illustrations In this section, we consider the case d “ 2. The kernel sinc has
good properties for practical purposes. Denoting ϕh,jpxq “ π?

h1h2
Kpx1

h1
´ πj1,

x2
h2
´ πj2q we can

prove that f̂h “
ř

j â
h
jϕh,j and the coefficients âhj can be computed with Fast Fourier Transform

algorithm, remarking that

âhj “
1

4π2

ż

f̂˚hϕ
˚
h,j “

?
h1h2

4π

ż 1{h1

´1{h1

ż 1{h2

´1{h2

xf˚Y
f˚ε
pu1, u2qe

iπpu1h1j1`u2h2j2qdu1du2.

Moreover f̂h,h1 “ f̂h_h1 where h_ h1 “ pmaxph1, h
1
1q,maxph2, h

1
2qq, and }f̂h1 ´ f̂h_h1}2 “ }f̂h1}2 ´

}f̂h_h1}
2. Thus our estimator can be computed very fast. We take H and H0 included in

t4{m, 1 ď m ď 3n1{4u, Ṽ0phq “ 0.01 logpnqV0phq and Ṽ phq “ 0.05 log2pnqV phq (the calibration
of constants has been done on a preliminary training set of various examples). We compute
estimators for Examples 1–3 with λ “ 6, µ “ 1{4.

For each path, we compare the MISE for the global procedure with the minimum risk for all
bandwidths of the collection. Let us define

Coracle “ E

˜

}f̃ ´ f}2

infhPH }f̂h ´ f}2

¸

.

Then empirical version of Coracle averaged over 100 samples is given below.

n “ 100 n “ 300 n “ 500 n “ 750 n “ 1000

Ex 1 1.48 2.04 2.01 1.96 1.97
Ex 2 1.08 1.03 1.05 1.07 1.25
Ex 3 1.36 1.53 1.57 1.57 1.62

It shows that the adaptation is performing, since the risk for the chosen ĥ is very close to the
best possible in the collection (the nearest of one Coracle, the better the algorithm).

We also illustrate the results with some figures. Figure 9 shows the surface z “ fpx, yq
for Example 2 and the estimated surface z “ f̃px, yq obtained by global bandwidth selection.
For more visibility, sections of the previous surface are drawn. We can see the curves z “
fpx,´0.3q versus z “ f̃px,´0.3q and the curves z “ fp´0.3, yq versus z “ f̃p´0.3, yq. For this
figure, the selected bandwidth is ĥ “ p0.29, 0.57q. Thus, the bandwidth in the first direction is
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Figure 9: Example 2, global bandwidth selection, with n “ 500. Top right: true density f , top
left: estimator f̌ , bottom: sections, dark line for f and light line for the estimator.
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Figure 10: Example 3, pointwise bandwidth selection,with n “ 500. Top right: true density f ,
top left: estimator f̃ , bottom: sections, dark line for f and light line for the estimator.
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Figure 11: Dependent case, global bandwidth selection,with n “ 500. Top right: true density f ,
top left: estimator f̃ , bottom: sections, dark line for f and light line for the estimator

twice smaller, to recover the two modes: this shows that our procedure takes really anisotropy
into account. Figure 10 shows an analogous illustration for Example 3, but with a pointwise
bandwidth selection. We obtain a slightly more angular figure.

To conclude this section, we would like to mention that we can keep good results even in
case of dependent components of both the noise and the signal. More precisely, we can take

X „ N p0,Σq and ε „ N p0,Σεq with Σ “

ˆ

1 ´0.7
´0.7 2

˙

and Σε “ 10´2

ˆ

1 0.25
0.25 1.0625

˙

,

with X and ε independent. We present in Figure 11 an illustration of this example.

3.1.3 Case of an unknown noise distribution

We still consider the model of sample

Yj “ Xj ` εj j “ 1, . . . , n

where the aim is to estimate the density f of X when only Y1, . . . , Yn are observed. Until now,
we have always assumed that the error distribution was known. Unfortunately, it is clear that
this assumption is often unrealistic. Sometimes, this problem can be circumvented by repeated
observations of the same variable of interest, each time with an independent error. However,
there are also many application fields where it is not possible to do repeated measurements of
the same variable. In that case, information about the error distribution can be drawn from an
additional experiment: a training set is used by experimenters to estimate the noise distribution.
Think of ε as a measurement error due to the measuring device; then preliminary calibration
measures can be obtained in the absence of any signal X (this is often called the instrument
line shape of the measuring device). Mathematically, this means that the knowledge of fε can
be replaced by observations ε´1, . . . , ε´M , a noise sample with distribution fε, independent of
pY1, . . . , Ynq. It has the advantage that only one measuring device is needed, instead of two or
more for repeated measurement strategies. Note that the availability of two distinct samples
makes the problem identifiable.
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Actually, this is a natural method used by practitioners. One of the most typical domains
where a preliminary estimation of the measurement error is done is spectrometry, or spectro-
fluorimetry, and we detail in [L10] an example in microscopy from Odiachi and Prieve (2004).

It is worth mentioning that the problem of adaptation which is studied here is of non linear
type and thus difficult to solve, in spite of the apparent simplicity of the estimator of the Fourier
Transform of fε. See the study of similar questions in the context of inverse problem with error
in the operator in Hoffmann and Reiß (2008) or Cavalier and Raimondo (2007). Similar methods
also appear in Lévy model: see for instance Kappus (2012) or Gugushvili (2012).

Although there exists a huge literature concerning the estimation of f when fε is known,
this problem without the knowledge of fε has been less studied. One can cite Efromovich (1997)
and Johannes and Schwarz (2013) in a context of circular data and Diggle and Hall (1993) who
examine the case M ě n. Meister (2004) studies the effect of noise misspecification. A few
authors have studied the exact problem which is considered in this paper, but only for particular
type of smoothness for fε or f or other type of risks. Neumann (1997a) gives an upper bound
and a lower bound for the integrated risk in the case where both f and fε are ordinary smooth,
and Johannes (2009) gives upper bounds for the integrated risk in a larger context of regularities.

Estimation procedure We start with the same estimator as previously, with 1{h “ πm,
defined by

f̂˚ptq “ 1r´πm,πmsptq
xf˚Y ptq

f˚ε ptq
.

Here f˚ε is also unknown and need to be estimate. Therefore, we use the preliminary noise sample
and we define the natural estimator of f˚ε : f̂˚ε pxq “

1
M

řM
j“1 e

´ixε´j . To avoid the problem of a
vanishing denominator, we introduce the truncated estimator:

1

f̃˚ε pxq
“
1
t|f̂˚ε pxq|ěM´1{2u

f̂˚ε pxq
“

$

&

%

1

f̂˚ε pxq
if |f̂˚ε pxq| ěM´1{2

0 otherwise.
(13)

Then we can consider

f̂mpxq “
1

2π

ż πm

´πm
eixu

f̂˚Y puq

f̃˚ε puq
du. (14)

We can prove (see [L10]) that this estimator is also a minimum contrast estimator, and it has
also another expression given in (17).

Study of the integrated risk Let fm such that f˚m “ f˚1r´πm,πms “ Epf̂˚Y {f
˚
ε 1r´πm,πmsq.

We introduce the notations

∆pmq “
1

2π

ż πm

´πm

1

|f˚ε puq|
2
du and ∆f pmq “

1

2π

ż πm

´πm

|f˚puq|2

|f˚ε puq|
2
du.

Then we can prove the existence of a numerical constant C such that:

Ep}f̂m ´ f}2q ď }fm ´ f}2 ` C
∆pmq

n
` pC ` 2q

∆f pmq

M
. (15)

The first term is the classical bias (“ Bphq with previous notations). The second term is the
variance term for deconvolution problems (with previous notations V phq “ ∆pmq{n). The third
term ∆f pmq{M is due to the estimation of f˚ε . As |f˚pxq| ď 1, we have ∆f pmq ď ∆pmq. It
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follows that for any M ě n, then E}f̂m ´ f}2 ď }fm ´ f}2 `C∆pmq{n and we recover the usual
risk bound for deconvolution estimation when f˚ε is known. Therefore, in all cases, the condition
M ě n ensures that the rate of the estimator is the same as when f˚ε was known. Notice that
inequality (15) is also true for multivariate deconvolution (see [L12]). However, for the rates of
convergence and the following of this section, we restrict to the case of real variables.

As previously we assume a parametric description of the rate of decrease of f˚ε written as
follows:

|f˚ε ptq| « pt
2 ` 1q´β{2 expp´α|t|ρq.

Moreover, the distribution function f to estimate is assumed to belong to the extended Sobolev
space Spb, a, r, Lq defined as the class of integrable functions satisfying

ż

|f˚ptq|2p1` t2qb expp2a|t|rqdt ď L2,

We recall that when r ą 0, the function f is called supersmooth, and ordinary smooth otherwise.
In the same way, the noise distribution is called ordinary smooth if ρ “ 0 and supersmooth
otherwise.

Under these assumptions the bias and the variance terms can be evaluated. This allows us
to obtain the upper bounds for the rate of convergence of the Mean Integrated Squared Risk (for
a good choice of m depending on each case):

noise OS noise SS

f OS n
´ 2b

2b`2β`1 `M
´r1^p b

β
qs

plog nq
´ 2b
ρ ` plogMq

´2b
ρ

f SS
plog nq

2β`1
r

n
`

1

M
see the discussion below.

The last case, when both functions are supersmooth (r ą 0 and ρ ą 0), is much more tedious,
in particular if one wants to evaluate the rates. Three cases have to be distinguished. When
r “ ρ, these are polynomial rates in n and M . Roughly speaking, when f is more regular than
the noise r ą ρ, the rate is of the form wn `

1
M , and is the opposite case un ` vM , where u, v, w

are sequences decreasing faster than logarithm: plognqO

n ă u, v, w ă plog nqM.
A similar table of rates for the pointwise risk can be found in [L9].
Concerning lower bounds for the integrated risk, we obtain a partial result. The following

proposition establishes the optimality of our estimator with respect of both risks in the cases
where f is smoother than fε and r ď 1.

Proposition 27 ([L10]). Under assumption (E), if r “ ρ “ 0 and β ă b ´ 1{2, or if 0 ď ρ ă
r ď 1 then

inf
f̂

sup
f,fε

E}f̂ ´ f}22 ě CM´1

where the infimum is taken over all estimators f̂ of f based on the observations Y1, . . . , Yn, ε´1 . . . , ε´M .
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Adaptation The above study shows that the choice of m is both crucial et difficult. Thus,
we provide a data driven strategy to perform automatically this choice. We assume that we are
able to manage with M much larger than n: this means that we need a careful calibration step,
but this step is done once for all. More precisely, we assume in the following that M “ n2. This
preliminary ε-sample will enable us to provide a density estimator for any new n-sample of the
Yi’s. Consequently, our aim is to preserve here the rate corresponding to the case of an n-sample
of observations Yi when f˚ε is known.

The estimation procedure is completed as follows. We choose the best estimator among the
collection pf̂mqmPMn whereMn Ă t1, . . . , nu is the set of all considered indexes. To do this, we
consider

m̂ “ arg min
mPMn

t´}f̂m}
2 ` penpmqu

where pen is a penalty term. A traditional choice for the penalty is of order of the variance, here
V pmq “ ∆pmq{n. But ∆pmq needs to be estimated. Then we define

penpmq “ κ

˜

logp∆̂pmqq

logpm` 1q

¸2
∆̂pmq

n
, ∆̂pmq “

ż πm

´πm
|f̃˚ε pxq|

´2dx. (16)

Let us also define m̂n “ arg max
!

m P t1, . . . , nu, 1{4 ď ∆̂pmq{n ď 1{2
)

.

Then the following theorem shows that we have completely solved our problem with a data-
driven procedure. Notice that here, the penalty is not only data driven, but the collection of
models is also randomly selected on the basis of the observations.

Theorem 28 ([L10]). Assume that assumption (E) is fulfilled. Consider the estimator f̃ “ f̂m̂
defined by (14) and

m̂ “ arg min
mPt1,...,m̂nu

tγnpf̂mq ` penpmqu

with penpmq defined by (16), κ being a pure numerical constant (κ “ 128 would work). Then,
for n large enough, we have

E}f̃ ´ f}2 ď C1 inf
mPMn

t}fm ´ f}
2 ` penpmqu `

C2 log1ρą1pnq

n
,

where C1 is a pure numerical constant (C1 “ 40 would suit), and C2 is a constant depending on
f and fε.

The result of Theorem 28 is an oracle inequality which states that the estimator f̂m̂ makes
the compromise between the squared bias term }f ´ fm}

2 and the penalty, except for a possible
logpnq factor (which appears only if ρ ą 1, in which case it is negligible). If the penalty has
exactly the order of the variance ∆pmq{m, then the optimal rate is reached. Otherwise, a loss
may occur, since we have a multiplicative factor m2ρ{ log2pm` 1q. In the cases ρ “ 0 (ordinary
smooth error) or r “ 0, ρ ą 0 or 0 ă r ă ρ, we can easily prove that the rate of convergence
of the estimate is not affected. If r ě ρ ą 0, the loss in the rate concerns only the logarithmic
terms, which are negligible with respect to the rate. Therefore, if a loss in the rate occurs, as
price of the adaptive property of the procedure, we know that it is negligible with respect to the
rate of convergence of the estimator (it follows from results in Butucea and Tsybakov (2007) that
a loss may be unavoidable in the adaptive procedure; in that case, the rate is called adaptive
optimal).
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Let us emphasize here that the interest of the penalty (16) is that the terms required in
the supersmooth case are added without requiring the information: are the errors ordinary
smooth or supersmooth, and what is the value of ρ. Nevertheless, this procedure has been
improved by the very recent work (posterior to this one) of Kappus and Mabon (2014). Their
considerations on a very different penalty term allow to handle the case of small noise samples
M ă n (with nevertheless a loss of logarithmic order), and to dispose completely of our semi-
parametric assumptions on the noise smoothness, which makes more sense in model selection
procedure leading to non-asymptotic oracle inequalities.

Numerical illustration In practice we use the following expression of our estimator:

f̂m “
ÿ

lPZ
âm,lϕm,l with âm,l “

1

n

n
ÿ

j“1

ṽϕm,lpYjq (17)

where ϕm,jpxq “
?
mϕpmx ´ jq, ϕpxq “ sinpπxq{pπxq, and ṽ˚t puq “ t˚puq{f̃˚ε p´uq. Since the

coefficients âm,l can be computed using the Inverse Fast Fourier Transform, that clearly makes
the procedure fast.

Let us first compare our estimator to the one of Neumann (1997a). He denotes by f0pxq “
e´|x|{2 and he considers two examples:
- example 1: f “ f0 ‹ f0 ‹ f0 ‹ f0 and fε “ f0 ‹ f0

- example 2: f “ f0 ‹ f0 and fε “ f0 ‹ f0 ‹ f0 ‹ f0

We set, as in Neumann (1997a), n “ 200 and M “ 10 and the L2 risk is computed with 100
random samples. In these examples, the signal and the noise are ordinary smooth (r “ ρ “ 0):
this induces the rates of convergence n´

15
24 `M´1 and n´

7
24 `M´ 7

16 for examples 1 and 2 respec-
tively. We also compute the estimator with known noise, replacing f̃ε by fε in the procedure.
The integrated L2 risks for 100 replications are given below in Table 1 and show our improvement
of the results of Neumann (1997a).

ex 1 ex 2
fε known 0.00257 0.01904
fε unknown 0.00828 0.06592

ex 1 ex 2
fε known 0.00243 0.01791
fε unknown 0.00612 0.03427

Table 1: MISE for the estimators of Neumann (1997a) (left) and for the penalized estimator
(right).

An example of estimation for supersmooth functions is given in Johannes (2009). In his ex-
ample 5.1, he considers a standard Gaussian noise and X „ N p5, 9q. In this case r “ 2, b “ 1{2

and ρ “ 2, β “ 0 and the rate of convergence is n´
9
10 plog nq´1{2 `M´1. The improvement

brought by our method is striking.

In [L10] different signal densities and different noises are also considered. We notice that the
estimation of the characteristic function of the noise does not spoil so much the procedure. It
even happens that the estimation with unknown noise works better, which is likely due to the
truncation (13).

Figure 12 illustrates these results for two cases: a mixed Gamma density estimated through
Laplace noise and a Laplace density estimated through Gaussian noise. The curves for M “ 5
show that our method is still very satisfactory for small values of M .
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n “ 100 n “ 250 n “ 500

fε known 2.0 0.9 0.6

M “ 100 2.0 1.0 0.7

M “ 250 1.9 1.0 0.6

M “ 500 1.9 0.9 0.6

n “ 100 n “ 250 n “ 500

fε known 0.71 0.23 0.12

M “ 100 0.24 0.11 0.07

M “ 250 0.21 0.12 0.07

M “ 500 0.21 0.12 0.07

Table 2: Third quartile of the MISE ˆ100 for the estimators of Johannes (2009) (left) and for
the penalized estimator (right).
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Figure 12: True function f (bold line) and estimators for n “ 500. Left: mixed Gamma density
with Laplace noise. Right : Laplace density with Gaussian noise.

3.1.4 Estimation for pure-jump Lévy processes

Consider pLt, t ě 0q a real-valued Lévy process with characteristic function given by:

ψtpuq “ Epexp iuLtq “ exp pt

ż

R
peiux ´ 1qNpxqdxq. (18)

We assume that the Lévy measure admits a density N and that the function gpxq “ xNpxq is in-
tegrable. Under these assumptions, pLt, t ě 0q is a pure jump Lévy process without drift and with
finite variation on compact sets. Suppose that we have discrete observations pLk∆, k “ 1, ..., nq
with sampling interval ∆. Our aim here is the nonparametric adaptive kernel estimation of the
function xNpxq based on these observations under the asymptotic framework nÑ8 and ∆ Ñ 0.

Estimation for Lévy processes is very linked to convolution model, due to the use of charac-
teristic functions. By the way, papers in this domain quite often refer to deconvolution literature.
Indeed, as we just see, deconvolution study is based on the equality f˚ “ f˚Y {f

˚
ε . Here in our

context of Lévy process g˚ “ p´i{∆qpf˚L∆
q1{f˚L∆

where gpxq “ xNpxq. We have then to estimate
the right member in order to reconstruct the Fourier transform of the target. In general, since
both numerator and denominator have to be estimated, methods are similar to deconvolution
with unknown error. Here, we only consider the high frequency context, then f˚L∆

“ ψ∆ « 1 and
only the numerator needs to be estimate.

This subject has been recently investigated by several authors. Figueroa-López and Houdré
(2006) use a penalized projection method to estimate the Lévy density on a compact set separated
from 0. Other authors develop an estimation procedure based on empirical estimations of the
characteristic function ψ∆puq of the increments pZ∆

k “ Lk∆ ´ Lpk´1q∆, k “ 1, . . . , nq and its
derivatives followed by a Fourier inversion to recover the Lévy density. For low frequency data
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(∆ is fixed), we can quote Watteel and Kulperger (2003), or Jongbloed and van der Meulen
(2006) for a parametric study. Still in the low frequency framework, Neumann and Reiß (2009)
estimate νpxq “ x2Npxq in the more general case with drift and volatility, and Comte and
Genon-Catalot (2010) use model selection to build an adaptive estimator. An adaptive method
to estimate linear functionals is also given in Kappus (2012). Belomestny (2011) addresses the
issue of inference for time-changed Lévy processes with results in term of uniform and pointwise
distance. One can also cite Gugushvili (2012) or Nickl and Reiß (2012) for recent works at fixed
∆. Here we introduce a kernel estimator with local bandwidth selection. Note that a pointwise
study involving a kernel estimator can be found in van Es et al. (2007) for more specific compound
Poisson processes, but the estimator is different from ours, as well as the observation scheme. In
Figueroa-López (2011) a pointwise central limit theorem is given for the estimation of the Lévy
density, as well as confidence intervals. Still in the high frequency context, but for integrated
distance, we can cite Ueltzhöfer and Klüppelberg (2011), and Duval (2012) for the estimation of
a compound Poisson process with low conditions on ∆. Bücher and Vetter (2013) deal with the
multivariate case.

Here we shall study local adaptive bandwidth selection (which the previous authors do not
consider). For a given non-zero real x0, we select a bandwidth ĥpx0q using Goldenshluger-Lepski
method, such that the resulting adaptive estimator ĝĥpx0q

px0q automatically reaches the optimal
rate of convergence corresponding to the unknown regularity of the function g. The advantage
of our kernel method is that it allows us to estimate the Lévy density at a given point, with a
local adaptive choice.

Estimator We start from the equality:

E
”

Z∆
k e

iuZ∆
k

ı

“ ´iψ1∆puq “ ∆ψ∆puqg
˚puq, (19)

obtained by differentiating (18). Here g˚puq “
ş

eiuxgpxqdx is the Fourier transform of g, well
defined since we assume g integrable. Then, as ψ∆puq » 1, equation (19) writes E

”

Z∆
k e

iuZ∆
k

ı

»

∆g˚puq. This gives an estimator of g˚puq as follows:

1

n∆

n
ÿ

k“1

Z∆
k e

iuZ∆
k .

Now, to recover g, we introduce a kernel to make inversion possible:

1

n∆

n
ÿ

k“1

Z∆
k K

˚puhqeiuZ
∆
k

which is in fact the Fourier transform of 1{pnh∆q
řn
k“1 Z

∆
k Kppx ´ Z∆

k q{hq. At the end, in the
high frequency context, a direct method without Fourier inversion can be applied. Indeed, a
consequence of (19) is that the empirical measure:

µ̂npdzq “
1

n∆

n
ÿ

k“1

Z∆
k δZ∆

k
pdzq

weakly converges to gpzqdz (note that the idea of exploiting this weak convergence is already
present in Figueroa-López (2009b)). This suggests to consider kernel estimators of g of the form

ĝhpxq “ Kh ‹ µ̂npxq “
1

n∆

n
ÿ

k“1

Z∆
k Khpx´ Z

∆
k q

61



where Khpxq “ p1{hqKpx{hq and K is a kernel such that
ş

K “ 1. Below, we study the quadratic
pointwise risk of the estimators ĝhpxq and evaluate the rate of convergence of this risk as n tends
to infinity, ∆ “ ∆pnq tends to 0 and h “ hpnq tends to 0. This is done under Hölder regularity
assumptions for the function g.

Pointwise risk Let us now define the assumptions concerning the target function g, defined
by gpxq “ xNpxq, where N is the Lévy density. We shall assume that g belongs to the Hölder
class Hpβ, Lq i.e.

|gplqpxq ´ gplqpyq| ď L|x´ y|β´l, @x, y P R.

where l “ tβu is the largest integer strictly smaller than β. Moreover we define
Assumption G(p) g P L2, g˚ is differentiable almost everywhere and its derivative belongs to
L1, g1 exists and is uniformly bounded. Moreover, for p integer,

ş

|x|p´1|gpxq|dx ă 8.

This assumption ensures that E|Z∆
1 |

p ă 8. It also implies g P Hp1, L1q so we can assume
β ě 1.

Now let us describe which kind of kernel we choose for our estimator. Let us define the
following condition

K(β): K belongs to L1 X L2 X L8 and K˚ P L1. Moreover the kernel K is of order tβu (i.e.
ş

Kpuqdu “ 1,
ş

ujKpuqdu “ 0, j P t1, ..., tβuu) and
ş

|x|β|Kpxq|dx ă `8.

These assumptions are standard when working on problems of estimation by kernel methods.
Note that there is a way to build a kernel of order l (see Kerkyacharian et al. (2001) and
Goldenshluger and Lepski (2011)).

In all the following x0 P R is fixed, with x0 ‰ 0. The usual bias variance decomposition of
the Mean Squared Error yields:

Erppghpx0q ´ gpx0qq
2
s “ Erppghpx0q ´ Erpghpx0qsq

2s ` pErpghpx0qs ´ gpx0qq
2.

We can prove that the variance term is of order 1{pnh∆q. The bias needs further decomposition:
Erpgpx0qs ´ gpx0q “ b1px0q ` b2px0q with the usual bias,

b1px0q “ Kh ‹ gpx0q ´ gpx0q,

bounded by hβ , and the bias resulting from the approximation of ψ∆puq by 1,

b2px0q “ Erpgpx0qs ´Kh ‹ gpx0q.

bounded by ∆. Then, under G(2) and if K satisfies K(β), we have

Erppghpx0q ´ gpx0qq
2
s ď c1h

2β ` c2
1

nh∆
` c11∆2, (20)

with c1, c
1
1 depending on g,K and c2 “ p2πq

´1}K}22
`

}pg˚q1}1 ` }g
˚}22

˘

. For the two first terms the

optimal choice of h is hopt9pn∆q
´ 1

2β`1 and the associated rate has classical order O
´

pn∆q
´

2β
2β`1

¯

.

Next, a sufficient condition for ∆2 ď pn∆q
´

2β
2β`1 for all β is

∆ “ Opn´1{3q. (21)
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Under this condition, choosing hopt9pn∆q
´ 1

2β`1 gives Erppghoptpx0q ´ gpx0qq
2
s “ O

´

pn∆q
´

2β
2β`1

¯

and as a consequence Erppghoptpx0q{x0 ´Npx0qq
2
s “ O

´

pn∆q
´

2β
2β`1

¯

.
This rate turns out to be the optimal minimax rate of convergence over the class Hpβ, Lq.

This result is proved in Figueroa-López (2009a) in the more general case of estimators based on
the whole path of the process up to time n∆. In our case of discrete sampling, we give another
proof in [L14].

Adaptation As β is unknown, we need a data-driven selection of the bandwidth. We introduce
a set of bandwidth of the form H “ t jM , 1 ď j ď Mu with M an integer to be specified later.
Actually it is sufficient to control

ř

hPH h
´w for some w so that more general set of bandwidths

are possible. We set:

V phq “ C0
logpn∆q

nh∆

with C0 to be specified later. Note that V phq has the same order as the variance multiplied by
logpn∆q. We also define ĝh,h1px0q “ Kh1 ‹ ĝhpx0q “ Kh ‹ ĝh1px0q. Lastly we set, as an estimator
of the bias,

Aph, x0q “ sup
h1PH

“

|ĝh,h1px0q ´ ĝh1px0q|
2 ´ V ph1q

‰

`
.

Then, the adaptive bandwidth h is chosen as follows:

ĥ “ ĥpx0q P argmin
hPH

tAph, x0q ` V phqu.

In light of c2 in (20), a good choice for C0 is

C0 “
c

2π
}K}22

`

}pg˚q1}1 ` }g
˚}22

˘

.

However, }pg˚q1}1 and }g˚}22 are unknown, then these quantities have to be estimated with a
preliminar estimator of g˚. More precisely, we set K˚

0 “ 1r´1,1s and

{}pg˚q1}1 “

ż

ˇ

ˇ

ˇ

ˇ

ˇ

1

n∆

n
ÿ

k“1

pZ∆
k q

2K˚
0 puh1qe

iuZ∆
k

ˇ

ˇ

ˇ

ˇ

ˇ

du with h1 “ pn∆q´1{3,

z}g˚}22 “ }ĝ
˚
h2
}22 “

ż

ˇ

ˇ

ˇ

ˇ

ˇ

1

n∆

n
ÿ

k“1

Z∆
k K

˚
0 puh2qe

iuZ∆
k

ˇ

ˇ

ˇ

ˇ

ˇ

2

du with h2 “ pn∆q´1{3.

We introduce the following smoothness condition: a function ψ belongs to the Sobolev space
Sp1q if

ş

|ψ˚puq|2p1`uq2du ă 8 (this means that ψ has a derivative which is square-integrable).
Before to study the performance of our final estimator ĝĥpx0q, let us clarify the observation

context. We still work in the high frequency framework, and we have seen that we need condition
(21). Thus, the assumption on the observation step is the following

S ∆ Ñ 0 and n∆ Ñ8. Moreover ∆ ď 1 and ∆ “ Opn´1{3q

Theorem 29 ([L14]). We use a kernel satisfying K(1) and M “ Oppn∆q1{3q. Assume that g
satisfies G(32) and that g and xgpxq belong to Sp1q. In the definition of ĥ, replace V phq by
V̂ phq “ xC0logpn∆q{pnh∆q where

xC0 “
c

2π
}K}2

´

{}pg˚q1}1 `
z}g˚}22

¯
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with c ě 32 maxp1, }K}8q. Then, under scheme S,

Er|gpx0q ´ ĝĥpx0q|
2s ď C

"

inf
hPH

 

ess sup |g ´ Erĝhs|2 ` V phq
(

`
logpn∆q

n∆

*

.

Thus our estimator ĝĥ has a risk as good as any of the collection pĝhqhPH, up to a logarithmic
term. The pointwise control of the bias has been replaced with a uniform control. Actually,
it is possible to keep the pointwise risk in the right term at the cost of a supplementary term
suph1PH |Kh1 ‹bhpx0q|

2. Although our estimator is not linear (we have an extra bias), it is exactly
the same situation as in Goldenshluger and Lepski (2013), and we can conjecture it is in some
sense unavoidable.

Note that the theorem is valid for c large enough, say c ě c0. In the proof, we obtain the
upper bound 32 maxp1, }K}8q for c0, unfortunately we can conjecture that this bound is not the
optimal one. To obtain a sharper bound we have tuned c0 in the simulation study.

Let us now conclude with the consequence of this theorem in term of rate of convergence. As
already explained, as we need assumption G(p) to control the bias, we can assume β ě 1. Then

hopt9plogpn∆q{n∆q1{p2β`1q ě pn∆q´1{3

belongs to H as soon as M is larger than a constant times pn∆q1{3. Hence we can state the
following corollary.

Corollary 30. Assume that g belongs to Hpβ, Lq with β ě 1. We use a kernel satisfying K(β)
and M “ tpn∆q1{3u. Take C0 as in Theorem 29 with assumptions of this latter theorem. Then,
under scheme S,

Er|gpx0q ´ ĝĥpx0q|
2s “ O

´

plogpn∆q{n∆q
´

2β
2β`1

¯

.

Then the price to pay to adaptivity is a logarithmic loss in the rate. Nevertheless this
phenomenon is known to be unavoidable in pointwise estimation (see Butucea (2001)). Thus
ĝĥpx0q (resp. ĝĥpx0q{x0) is an adaptive estimator for gpx0q (resp. Npx0q).

The numerical performance of our method can be observed in [L14] where we give simulations
for various examples of Lévy processes. We also detail the extension of our procedure to irregular
sampling, i.e. to the case where the interval ∆ is not necessarily the same at each time.

3.1.5 Some prospects in deconvolution

• There are still a lot of problems where the issue of noisy data has not been completely
solved: estimation of the intensity of a Poisson process, adaptation in the problem of
uniform deconvolution, Berkson model, etc.. An issue (suggested by Elizabeth Gassiat)
which I find particularly interesting involves the semiparametric model of deconvolution,
with unknown noise variance. By assuming a dependence in the signal, e.g. X is a Markov
chain, one could ensure identifiability and easier estimation than in the independent case.

• Previous works have considered that the coordinate axes were preferential directions, but
this is not necessarily the case. Imagine a Gaussian noise with covariance, or a signal with
particular geometry. Then a convenient kernel has the form KHpxq “ pdetHq´1KpH´1xq
whereH is an invertible matrix. More generally, there is a lot to do in geometrical inference,
in line with Dedecker et al. (2015). In particular, assume that one observe a dynamical
system on a manifold Xn`1 “ fpXnq ` εn`1. The question is then to estimate f and to
find properties of the manifold.
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• While there is now a huge literature about estimation for Lévy process, similar considera-
tions for Lévy fields are very rare. However it is worth considering applications to spatial
statistics.
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3.2 Goodness-of-fit test for spherical data

3.2.1 Model and motivation

Convolution model has been studied in other frameworks than Rd, like the hyperbolic plane
(Huckemann et al., 2010), or compact Lie groups (Kim and Richards, 2001). Here we present
the case of spherical data, which finds a natural motivation in astrophysics and geography. The
model is then:

Zi “ εiXi, i “ 1, . . . , N (22)

where the εi are i.i.d. random variables of SO(3) the rotation group in R3 and the Xi’s are i.i.d.
random variables on S2, the unit sphere in R3. We suppose that Xi and εi are independent.
We also assume that the distributions of Zi and Xi are absolutely continuous with respect to
the uniform measure on S2 and we set fZ and f the densities of Zi and Xi respectively. The
distribution of εi is absolutely continuous with respect to the probability Haar measure on SO(3)
and we will denote it fε. Then we have

fZ “ fε ‹ f :“

ż

SOp3q
fεpuqfpu

´1ωqdu

where ‹ denotes the convolution product.
The figure below gives an example of a 100-sample on the sphere : X left, Z right (to visualize

points on the sphere, we use Hammer projection, because of its equal-area property).

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

Here, instead of estimating f , we want to provide a nonparametric adaptive minimax goodness-
of-fit testing procedure on f from the noisy observations Zi. More precisely, let f0 being the
uniform density on S2, we consider the problem of testing the null hypothesis f “ f0 with
alternatives expressed in L2 norm over Sobolev classes.

Spherical data arise in many areas of scientific experimentation and observation. As exam-
ples of directional data from various fields, we instance in astrophysics the arrival directions of
the Ultra High Energy Cosmic rays (UHECR), from structural geology the facing directions of
conically folded planes, from paleomagnetism the measurements of magnetic remanence in rocks,
from meteorology the observed wind directions at a given place and from physical oceanography
the measurements of current ocean directions. In this dissertation, we will particularly focus on
the UHECR study as application of our statistic procedure.

In astrophysics, a burning issue consists in understanding the behaviour of the so-called
UHECR. These latter are cosmic rays with an extreme kinetic energy (of the order of 1019 eV) and
the rarest particles in the universe. The source of those most energetic particles remains a mystery
and the stake lies in finding out their origins and which process produces them. Astrophysicists
have at their disposal directional data which are measurements of the incoming directions of the
UHECR on Earth. Needless to say that finding out more about the law of probability of those
incoming directions is crucial to gain an insight into the mechanisms generating the UHECR. Faÿ
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et al. (2012) recently developed isotropy goodness-of-fit tests based on the so-called needlets for
the non perturbated case. Their study is focused on the practical aspect with nice simulations
connected to realistic cosmic rays scenarios. But the difficulty lies in the fact that the observed
UHECR do not come necessarily from the genuine direction as specified by Faÿ et al. (2012).
Their trajectories are deflected by Galactic and intergalactic fields. As this deflection is inevitable
in the measurements, it is quite challenging and essential to take into account this uncertainty
in the statistical modelling. A first way to model the deflection in the incoming directions can
be done thanks to the model (22) with random rotations. Concerning the hypotheses about
the underlying probability of the incoming directions, several are made. A uniform density
would suggest that the UHECR are generated by cosmological effects, such as the decay of relic
particles from the Big Bang. On the contrary, if these UHECR are generated by astrophysical
phenomena (such as acceleration into Active Galactic Nuclei (AGN)), then we should observe a
density function which is highly non-uniform et tightly correlated with the the local distribution
of extragalactic supermassive black holes at the center of nearby galaxies (AGN). First results
seemed to favour a non-uniform density but as underlined by Faÿ et al. (2012), a more recent
analysis based on 69 observations of UHECR softens this conclusion of anisotropy. To this
prospect, these relevant considerations lead naturally to goodness-of-fit testing on the uniform
density in the noisy model (22).

Considering goodness-of-fit testing in the spherical convolution model not only finds its in-
terest in the above important applications, but it also fills a gap both in the noisy setup testing
literature and the spherical convolution one. So far, only estimation has been treated in the
spherical setup. For the nonparametric estimation problem, one is interested in recovering the
underlying density f from noisy observations Zi. The pioneer works of Healy et al. (1998), Kim
and Koo (2002), Kim et al. (2004) introduced a minimax estimation procedure based on the
Fourier basis of L2pS2q. Recently, Kerkyacharian et al. (2011) proposed an optimal and adaptive
hard thresholding estimation procedure based on needlets.

Nonparametric goodness-of-fit testing has aroused a lot of interest. For minimax testing, we
refer to the work of Ingster (1993) which is the main reference in the field. Spokoiny (1996)
first established adaptive testing procedure based on wavelets over Besov bodies. Nonetheless,
goodness-of-fit testing has mainly focused on the case of direct observations. Indeed, very few
works have been devoted to the case of indirect observations. Let us cite the works of Bissantz
et al. (2009) for the inverse regression problem and Holzmann et al. (2007) for the multivariate
convolution density model. Butucea (2007) built minimax nonparametric goodness-of-fit testing
for convolution models based on kernels methods and Butucea et al. (2009) made a step forward
by building an adaptive testing procedure in the noisy setup.

For the uniform density of probability on the sphere namely f0 “ p4πq
´1
1S2 , we want to test

the hypothesis
H0 : f “ f0,

from observations Z1, . . . , ZN given by model (22). We consider the alternative

H1ps,R, CψN q : f PWspS2, Rq et }f ´ f0}
2
2 ě CψN

where C is a constant and ψN is the testing rate. The Sobolev space WspS2, Rq is defined below.
We would also like to bring to the reader’s attention some interesting facts when encountering

testing problems with indirect observations. Indeed, there is a natural connection between the
following approaches : to test f “ f0 or to test fε ˚ f “ fε ˚ f0. This question has been the
object of the recent works of Laurent et al. (2011); Loubes and Marteau (2014) and has been
previously evoked by Butucea et al. (2009). In the case of the convolution model on the real

67



line, Laurent, Loubes and Marteau prove that if a test procedure is minimax for testing problem
: HD

0 : fε ˚ f “ fε ˚ f0 versus HD
1 : fε ˚ pf ´ f0q P FD where

FD “ tg with smoothness s1 and }g}2 ě C 1n´4s1{p4s1`1q, with s1 “ s` νu,

then it is minimax for HI
0 : f “ f0 versus HI

1 : f ´ f0 P FI where

FI “ tf with smoothness s and }f}2 ě Cn´4s{p4s`4ν`1qu

but the reverse is not true (here n is the number of data and ν the smoothness index of the noise).
This interesting conclusion (that we can conjecture true in our context also) does not make it
any the less necessary to study the inverse problem here. Indeed, until the present work, the
minimax rates were not known in the context of noisy spherical data. Moreover, when dealing
with adaptive procedures, the link between the direct and inverse problems is not established
yet.

3.2.2 Fourier analysis on the sphere

Let us provide here some elements of Fourier analysis on SO(3) and S2. For a square integrable
function on S2, we can write

fpωq “
ÿ

lě0

l
ÿ

m“´l

f‹lmY
l
mpωq,

where (Y l
m) is the spherical harmonic basis, and f‹lm “

ş

S2 fpxqY l
mpxqdx is the spherical Fourier

transform on S2, considered at each level l as a p2l ` 1q vector. Then it is sufficient to estimate
the Fourier coefficients f‹lm to retrieve f . In the same way, the eigenfunctions of the Laplace
Beltrami operator on SO(3) lead to an orthonormal basis on L2pSOp3qq: (

?
2l ` 1Dl

mn, ´l ď
m, n ď l, l “ 0, 1, . . .). Then, for a function g in L2pSOp3qq (with respect to the Haar measure),

gpuq “
ÿ

lě0

ÿ

´lďm,nďl

g‹lmnp2l ` 1qDl
mnpuq,

where g‹lmn “
ş

SOp3q gpuqD
l
mnpuqdu, is the Fourier transform, considered at each level l as a

p2l ` 1q ˆ p2l ` 1q matrix. Moreover, the Fourier coefficients of a convolution product are
described by the following matrix product: for all ´l ď m ď l, l “ 0, 1, . . .,

pfε ‹ fq
‹l
m “

l
ÿ

n“´l

pf‹lε qmnf
‹l
n “ pf

‹l
ε f

‹lqm.

Observing this formula, we see that it is sufficient to estimate pfZq‹lm from Z1, . . . , ZN and
to inverse the matrices f‹lε . We shall assume here that these matrices are invertible. Moreover,
denoting }A}op “ suph‰0 }Ah}2{}h}2, we will say that the distribution of ε is

ordinary smooth of order ν if: @l ě 0 }pf‹lε q
´1}op À lν and }f‹lε }op À l´ν ,

supersmooth of order β if: @l ě 0 }pf‹lε q
´1}op À l´ν0 expplβ{δq and }f‹lε }op À

lν1 expp´lβ{δq.
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Recall that we assume that fε is known, consequently ν or β are also considered known.
Let us give two examples of noise distribution. The rotational Laplace distribution is the ro-
tational analogue of the well-known Euclidean Laplace distribution (known also as double ex-
ponential distribution). Its expanded form in terms of rotational harmonics is the following
fε “

ř

lě0

řl
m“´lp1` σ

2lpl` 1qq´1p2l` 1qDl
mm, for some σ2 ą 0 which is a variance parameter.

Hence we have
pf‹lε qmn “ p1` σ

2lpl ` 1qq´1δmn,

for l “ 0, 1, . . . and where δmn “ 1 if m “ n and is 0 otherwise. The Laplace distribution is
ordinary smooth with a smoothness index ν “ 2. Let us present now the Gaussian distribution.
The distribution can be written as follows

fε “
ÿ

lě0

l
ÿ

m“´l

expp´σ2lpl ` 1q{2qp2l ` 1qDl
mm,

for σ ą 0. This is an example of a supersmooth distribution with δ “ 2{σ2 and β “ 2.
Let us now precise what are the regularity assumptions on the signal. For some fixed constant

R ą 0, let WspS2, Rq denote the smoothness class of densities f which satisfy

}f}2Ws
:“

ÿ

lě0

l
ÿ

m“´l

p1` lpl ` 1qqs|f‹lm |
2 ď

1

4π
`R2.

3.2.3 Test procedure

For the uniform density of probability on the sphere namely f0 “ p4πq
´1
1S2 , we want to test

the hypothesis
H0 : f “ f0,

from observations Z1, . . . , ZN given by model (22). We consider the alternative

H1ps,R, CψN q : f PWspS2, Rq and }f ´ f0}
2
2 ě CψN

where C is a constant and ψN is the testing rate.
In order to build a test statistic, as usual, we first have to construct an unbiased estimator of

the quadratic functional
ş

S2pf ´ f0q
2 “ }f ´ f0}

2
2. To do so, we remark that thanks to Parseval

equality:
ż

S2

pf ´ f0q
2 “

ÿ

lě0

l
ÿ

m“´l

|f‹lm ´ f0
‹l
m|

2 “
ÿ

lě1

l
ÿ

m“´l

|f‹lm |
2,

the last equality coming from the fact that pf0q
‹l
m ‰ 0 only for pl,mq “ p0, 0q. From now on we

denote f‹lε´1 “ pf
‹l
ε q
´1. Since f‹l “ f‹lε´1f

‹l
Z for l “ 0, 1, . . . , we can write under our assumptions

f‹lm “
l
ÿ

n“´l

pf‹lε´1qmnpf
‹l
Z qn.

A natural estimator of f‹lm is given by

f̂‹lm “
1

N

N
ÿ

i“1

l
ÿ

n“´l

pf‹lε´1qmnY l
npZiq.
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If we denote by Φlmpxq “
řl
n“´lpf

‹l
ε´1qmnY l

npxq then f̂‹lm “ 1
N

řN
i“1 ΦlmpZiq. Consequently, we

can derive an unbiased estimator Tlm of |f‹lm |2

Tlm “
2

NpN ´ 1q

ÿ

i1ăi2

ΦlmpZi1qΦlmpZi2q,

and finally an estimator of }f ´ f0}
2
2

TL “
L
ÿ

l“1

l
ÿ

m“´l

2

NpN ´ 1q

ÿ

i1ăi2

ΦlmpZi1qΦlmpZi2q.

We can now define a test procedure

∆ “

#

1 if |TL| ą t2,

0 otherwise,

for a threshold t2 „
a

VarpTLq (L2ν`1{N for ordinary smooth noise and expp2Lβ{δq{N for
supersmooth noise). The choice of L is crucial but the optimal choice depends on s (the unknown
regularity of f) a priori. This point will be solved in Section 3.2.4.

As one may have noticed, the noise smoothness hypothesis and hence the test procedure only
rely on the Fourier transform of the noise density fε. Consequently, we do not need the existence
of the density fε but only the existence of the characteristic function EpDl

mnpεqq of the variable
ε.

3.2.4 Rates of convergence

It is known that the separation rate in case of direct observations in dimension two is N´4s{p4s`2q

when one considers for the alternative functions belonging to Sobolev ellipsoid in dimension 2 (see
Ingster and Sapatinas (2009)). We can prove (see [L13]) that for our case of indirect observations
spoiled by an ordinary smooth noise, this rate is modified in ψN “ N´2s{p2s`2ν`1q.

This means that testing with a faster rate than ψN “ N´2s{p2s`2ν`1q is impossible. If the
distance between f0 and the alternative is smaller than ψN “ N´2s{p2s`2ν`1q, the sum of the
error of the two kinds is close to 1. Nevertheless, it requires the knowledge of the smoothness
index s. That is why we want to build on a so-called adaptive test procedure which does not
depend on s. But we prove in the next statement that we have to face a phenomenon of “lack
of adaptability” for our problem, i.e. it is not possible to test adaptively with the same rate.
Indeed, in the context where s is unknown and belongs to some set S, there is not any universal
test with small error for each s P S. The price to pay for adaptivity is an extra factor

?
log logN

in the separation rate.

Theorem 31 ([L13]). Assume that the noise is ordinary smooth with order ν. For all s ě 1, let
ψadN psq “ pN{

a

log logpNqq´2s{p2s`2ν`1q. Let S be a set such that SXr1,8q contains an interval.
If C ď KR2 then,

lim inf
NÑ8

inf
∆N

#

Pf0p∆N “ 1q ` sup
sPS

sup
fPH1ps,R,CψadN psqq

Pf p∆N “ 0q

+

ě 1

where the infimum is taken over all test procedures ∆N based on the observations Z1, . . . , ZN .
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Note on the proof:
The proof is based on the construction of a set of random functions which are far from f0 is L2

distance but corresponding to close statistical models. These functions are of the form

fθ “ f0 ` c
ÿ

L

L´1
ÿ

l“L{2

l
ÿ

m“´l

θLlmϕlm

where ϕlm is such that fε ‹ ϕlm “ Ylm. Here, in order to have a result on adaptive estimators,
we need to choose a grid of values for s: s1 ă ¨ ¨ ¨ ă skN with kN „ logN , and corresponding
values for J defined by 2Jjp2ν`2sj`1q „ N{

?
log logN . Then the θLlm are chosen following a prior

µ “ kN
´1 řkN

j“1 µj and µjpθLlm “ ˘2´Jjpν`sj`1qq “ 1{2 if L “ 2Jj , 2Jj´1 ď l ă 2Jj , ´l ď m ď l,
µjpθLlm “ 0q “ 1 otherwise. �

The next result show that our procedure achieves this rate. For the adaptation in s, a simple
maximum over a set of levels L is sufficient.

Theorem 32 ([L13]). Assume that the noise is ordinary smooth with order ν. Assume s ě 1
and ψadN “ pN{

?
log logNq´2s{p2s`2ν`1q. We consider the set L “ t2j0 , . . . , 2jmu where j0 “

rlog2plog logNqs, jm “ rlog2pNplog logNq´3{2qs and the adaptive test statistic

DN “ 1
tmaxLPLp|TL|{t

2
Lqą
?

2{K0u

with t2L “ L2ν`1
?

log logN{N. Then, if C ą
b

2K´1
0 ` pp4πq´1 `R2q22s,

lim
NÑ8

#

Pf0pDN “ 1q ` sup
fPH1ps,R,CψadN q

Pf pDN “ 0q

+

“ 0.

Note on the proof:
Usual deconvolution methods on R use kernel estimators and Fourier transform. But on the
sphere, the Fourier analysis (Fourier series instead of Fourier transform) leads to projection es-
timators. Consequently, the approach proves to be quite different than the one on the real line.
The difficulty of testing in a spherical deconvolution model can be seen in the following way. If
you use an orthogonal basis pψkq to estimate the unknown function f , then using U-statistics
requires that the “deconvolved” basis ϕk (such that ψk “ fε ‹ ϕk) is also (almost) orthogonal,
which is delicate to realize. This explains why we choose to use spherical harmonics and their
good properties in terms of orthogonality. �

This result shows that our procedure achieves the minimax rate of testing, and the limiting
distribution of the asymptotically minimax test statistic is degenerate. Note that the direct case
(without noise) is included in this result, taking ε “ Id, f‹lε “ Id, ν “ 0. In this case, the
separation rate is pN{

?
log logNq´2s{p2s`1q. To our knowledge, even in this simpler case, this

result was not established yet.
In the case of a supersmooth noise, as usual in deconvolution problems, the rate is degraded

into ψN “ plogNq´2s{β (see the lower bound theorem in [L13]). However, this rate is reached
without any knowledge on the smoothness of f :
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Theorem 33 ([L13]). Assume that the noise is supersmooth with order β. Assume s ě 1{2 and
ψN “ plogNq´2s{β and K0 ą 0. We consider L˚ “

Y

pδ logpNq{8q1{β
]

and the test statistic

DN “ 1t|TL˚ |{t
2
L˚
ąK0u

with t2L “ L´2ν0`1 expp2Lβ{δq{N. Then, if C ą K0 ` pp4πq
´1 `R2qpδ{16q´2s{β,

lim
NÑ8

#

Pf0pDN “ 1q ` sup
fPH1ps,R,CψadN q

Pf pDN “ 0q

+

“ 0.

A posterior work of Kim et al. (2015) studies the case of a supermooth density: in this case
the rate is greatly improved.

3.2.5 Numerical illustrations

Simulations We have investigated the performances of our testing procedure for two kind of
alternatives. These alternatives aim at describing different relevant scenarios in practice.

The first family of alternatives is non isotropic, unimodal with a Gaussian shape. More
precisely, it is a mixture of a Gaussian-like density with the uniform density f0. We will denote
this alternative by Ha

1 . The Ha
1 density has the following form

fpxq “ p1´ δqf0 ` δhγpxq,

where hγpxq :“ Cγ expp´dpx, x0q
2{p2γ2qq, d is the spherical distance, Cγ is a normalization

constant such that
ş

S2 fpxqdx “ 1 and x0 is pπ{2, 0q in spherical coordinates. In the sequel, we
chose δ “ 0.08 and γ “ 5π{180 i.e. γ “ 5o. Remark that with this choice of parameters, the
dose of uniformness injected in Ha

1 is high and complicates the detection of the alternative from
the null hypothesis. This density is particularly meaningful in the field of astrophysics since very
often one seeks for some departure from isotropy and some principal direction. Figure 13 allows
to visualize this alternative. The density is represented in spherical coordinates as a surface
z “ fpθ, φq.
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Figure 13: a/ Representation of the Ha
1 density in spherical coordinates. b/ 100 random draws

Xi from Ha
1 distribution, c/ 100 random draws Zi from Ha

1 convolved with a Laplace noise with
variance 0.1

The second alternative that we consider and which is denoted byHb
1 is the Watson distribution

(Watson, 1965). Its density is

fpθ, φq “ C expp´2 cos2pθqq

72



with C such that
ş2π
0

şπ
0 fpθ, φq sinpθqdθdφ “ 1. This distribution has a girdle form, distributed

around the equator. This choice is motivated by two reasons : first, this gives an alternative very
different from Ha

1 , second, it plays a role in applications. For example, in the case of gamma-ray
bursts (see Vedrenne and Atteia, 2009), many theories assumed that the sources of these flashes
were located around the galactic plane (then a girdle distribution), whereas other proposed that
gamma-ray bursts come from beyond the Milky Way (rather a uniform distribution). Figure 14
presents this alternative. Notice that the presence of noise (Figure 14 c/) prevents from seeing
the equatorial nature of the distribution.
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Figure 14: a/ Representation of the Watson density in spherical coordinates. b/ 100 random
draws Xi from Watson distribution, c/ 100 random draws Zi from Watson distribution convolved
with a Gaussian noise with variance 0.2

We computed the ROC curves for the three methods for different noise and numbers of
observations settings. Let us recall that the Receiver Operating Characteristic curves allow to
illustrate the performance of a test by plotting the true positive rate vs. the false positive rate,
at various threshold settings. Roughly speaking, greater the area under the ROC curve, better
the test.

Our adaptive testing procedure is denoted by SHT (as Spherical Harmonics Test). For the
quantile K0, we generate 1000 times N observations uniformly under H0. Then, we compute
by 1000 Monte Carlo runs the 5% quantile of the statistics maxLPLp|TL|{t

2
Lq defined in the

theorems. We point out that our numerical procedure is notably fast all the more so as we are
in dimension 2. Furthermore, we do not have any tuning parameter. To compare our results,
we have implemented two other procedures (designed for non-noisy data). The first one is called
the Nearest Neighbour test and was proposed by Quashnock and Lamb (1993), it will be denoted
NN in the sequel. The second procedure was introduced by Beran (1968) and Giné (1975). We
precise that on Figure 16a the solid line corresponding to the performance of our procedure SHT
is mixed up with the axes passing through the points p0, 0q, p0, 1q and p1, 1q.

Real data: UHECR To apply our procedure to UHECR data of observatory Pierre Auger
(The Pierre AUGER Collaboration (2010)), we need to take into account the observatory expo-
sure. Indeed, only cosmic rays with zenith angle of arrival less that 60o can be observed. Then, a
coverage function over the years of observation can be computed from geometrical considerations
and it is displayed in Figure 17.

In addition to the noise due to extragalactic magnetic fields, a selection is done depending on
whether the ray is in the observation area. Denoting the coverage density by g0, the observations
are now V1, . . . , VN where the density of V is proportional to g0 times fZ : fV “ cg0fZ , with c
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Figure 15: ROC Curves for the three methods and for the alternative Ha
1 : a/ No noise and

N “ 100. b/ Laplace noise with variance 0.1 and N “ 100.
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Figure 16: ROC Curves for the three methods and for the alternative Hb
1: a/ No noise and

N “ 100. b/ Laplace noise with variance 0.1 and N “ 100.
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Figure 17: a/ Representation of the 69 arrival directions of highest energy cosmic rays (Pierre
Auger data) b/ Coverage function g0 for the Pierre Auger observatory (the darker the more
observed, white area non-observed)

such that fV is a density. The relevant test is then f “ f0 ô fV “ g0. Although we do not
extend our theorems to this case, we nevertheless implement an extended method. Our initial
test procedure is based on the estimation of pfZq˚ln by N´1

ř

i Y
l
npZiq. Then it is sufficient to

apply the same procedure but with estimator N´1
řN
i“1pY

l
n{pcg0qqpViq. Indeed this quantity ap-

proximates
ş

fV Y l
n{pcg0q “

ş

fZY l
n “ pfZq

˚l
n . Using this method, we obtain the following p-values,

assuming different kinds of possible noise.

Noise type No noise Laplace Gaussian
variance 0.05 0.1 0.2 0.05 0.1 0.2

p 0.003 0.014 0.034 0.092 0.016 0.001 0.076

Then our method confirms what was already noticed by astrophycisists: there seems to be
some kind of anisotropy in the UHECR phenomenon.

3.2.6 Some prospects

Here we present some prospects for statistical works in view of astrophysical applications.
‚ In this section 3.2, we only dealt with the case of the uniform density, and some tools

developed in the proofs are specific to the uniform distribution. The case of other given densities
is of course of great interest in practice.
‚ A model which appears naturally in astrophysics in the one where the observations come

from a mixture between a signal and a background noise with an unknown proportion p (close
to 1):

Z „ pfε ` p1´ pqf.

The noise distribution fε is already identified. The question is then to estimate simultaneously
the proportion of the mixture and the signal density.
‚ Consider the following model: we observe Xi, . . . , Xn and Y1, . . . , Ym where the Xi’s are

i.i.d. variables on the sphere S2 with density f , and the Yi’s are i.i.d. on S2 with density g, the
two sample being independent. The aim is then to test the hypothesis H0 : f “ g versus the
alternative

H1ps, Cψnmq : f ‰ g, f, g with smoothness s, }f ´ g}22 ě Cψnm.
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This homogeneity test has application in astrophysics, in particular for the study of neutrinos
(Antares or Icecube Experiments). The data are now numerous, that allows us to hope a great
value for n. For the moment, with Gilles Fäy and Thanh Mai Pham Ngoc, we have introduced an
adaptive test using needlets, with rate ψmn “ pN{

?
log logNq´2s{p2s`1q where N´1 “ n´1`m´1.

Following discussions with Bruny Baret of laboratory APC (AstroParticules et Cosmologie, Paris
Diderot), we would like to study the case of noisy data, which seems more realistic.
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3.3 Nonparametric inference for hidden Markov chain

A direct extension of the convolution model consists in the hidden Markov chains (HMM). In
my PhD thesis, I had addressed the particular case of Markov chain only observed through
an additive noise, which is exactly the convolution model when the signal is Markovian ([L4],
[L5]). Here, I prefer to detail my work on general hidden Markov models with finite state
space. These models seem to be reliable to depict practical situations in a variety of applications
such as economics, genomics, signal processing and image analysis, ecology, environment, speech
recognition, to name but a few. In this framework a huge literature is concerning the case where
the observations distribution belongs to a parametric family. Inference is then achieved via Monte
Carlo methods, maximum likelihood estimators, EM (Expectation-Minimization) algorithm, see
Cappé et al. (2005). The nonparametric case requires another approach.

More precisely, the model that we study here is the following. From latent variables pXnqně1

which form a Markov chain with K possible values, the observations pYnqně1 are independent
conditionally to pXnqně1:

L ppYnqně1|pXnqně1q “
â

ně1

L pYn|Xnq .

We assume moreover that the distribution of Yn given Xn “ x has a density with respect to the
Lebesgue measure on R, denoted by fx. From observations Y1, . . . , YN , the model parameters to
be inferred are then:

• the transition matrix Q of the Markov chain on t1, . . . ,Ku (K is assumed to be known),

• the emission densities f1, . . . , fK .

Xn Xn`1

Q

Yn

fXn

Yn`1

fXn`1

Xn`2

Q

Yn`2

fXn`2

Until very recently, asymptotic performances of estimators were proved theoretically only in
the parametric frame (that is, with finitely many unknown parameters). Though, nonparametric
methods for HMMs have been considered in applied papers: see references in [L18]. Recent
papers that contain theoretical results on different kinds of nonparametric HMMs are Gassiat and
Rousseau (2015), where the emitted distributions are translated of each other, and Dumont and
Le Corff (2012) in which the authors consider regression models with hidden regressor variables
that can be Markovian on a continuous state space.

The preliminary obstacle to obtain theoretical results on general finite state space nonpara-
metric HMMs was to understand when such models are indeed identifiable. The papers Allman
et al. (2009), Hsu et al. (2012) and Anandkumar et al. (2012) paved the way to obtain identi-
fiability under reasonable assumptions. In Anandkumar et al. (2012) the authors point out a
structural link between multivariate mixtures with conditionally independent observations and
finite state space HMMs. In Hsu et al. (2012) the authors propose a spectral method to estimate
all parameters for finite state space HMMs (with finitely many observations), under the assump-
tion that the transition matrix of the hidden chain is non singular, and that the (finitely valued)
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emission distributions are linearly independent. Those spectral methods have the extremely in-
teresting characteristic that to compute the estimator the algorithms do not require initialization
as is usual in latent variable models estimation when using the EM algorithm. They may be used
under the linear independence assumption. Extension to emission distributions on any space,
under the linear independence assumptions (and keeping the assumption of non singularity of
the transition matrix), allowed to prove the general identifiability result for finite state space
HMMs. Gassiat et al. (2015) have established the following result: if the probability densities
f1, . . . , fK are linearly independent, and if Q has full rank, then the parameters Q and f1, . . . , fK
are identifiable from the distribution of three consecutive observations Y1, Y2, Y3, up to label
swapping of the hidden states (later, Alexandrovich and Holzmann (2014) obtained identifiability
when the emission distributions are all distinct, not necessarily linearly independent). Thus our
assumptions are the following.
Assumption (H)

• The Markov chain pXnqně1 is irreducible and aperiodic,

• The initial distribution π “ pπ1, . . . , πKq is the stationary distribution,

• The transition matrix Q has full rank,

• The family of emission densities tf1, . . . , fKu is linearly independent.

3.3.1 The spectral method

From now on we assume that the emission densities are in L2pRq and we shall use this Hilbertian
structure. The first step is to choose a sieve of finite dimensional subspaces with orthonormal
basis ΦM “ tϕ1, . . . , ϕMu: for example splines or Fourier basis or wavelets. Since we can set

pfM,k “

M
ÿ

m“1

{xfk, ϕmy ϕm,

the problem is reduced to estimate Q and xfk, ϕmy “ EpϕmpYnq|Xn “ kq, k “ 1, . . . ,K, m “

1, . . . ,M on the basis of the empirical distribution of the three-dimensional marginal, i.e. the
distribution of pY1, Y2, Y3q. Then we face a parametric problem and we can use the works of Song
et al. (2014) and Hsu et al. (2012) (see also references therein). They propose an algorithm which
uses only one SVD (singular value decomposition), matrix inversions and one diagonalization.
We need the following notation: @pa, b, cq P t1, . . . ,Mu3,@pm, kq P t1, . . . ,Mu ˆ t1, . . . ,Ku

P123pa, b, cq “ EpϕapY1qϕbpY2qϕcpY3qq

P13pa, cq “ EpϕapY1qϕcpY3qq

AM pm, kq “ EpϕmpY1q|X1 “ kq “ xfk, ϕmy

Note that P13 and P123 can be estimated by their empirical version, and AM is the unknown
parameter. The crucial lemma is the following one

Lemma 34. Let U be anyMˆK matrix such that P13U has rank K. Then UJP13U is invertible
and there exists an invertible matrix R such that

@b P t1, . . . ,Mu , Bpbq :“ pUJP13Uq
´1UJP123p. , b, . qU “ RDiagrAM pb, . qsR

´1 .
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This lemma seems technical but it permits to link observable (and easy to estimate) quantities
P13, P123 with the unknown target AM . It is then sufficient to estimate Bpbq and to diagonalize
it to retrieve the bth row of AM . An important point is that the change-of-basis matrix R
does not depend on b. Actually a slightly modification is necessary in order to separate the
eigenvalues. Indeed the replacement of P13 and P123 by their estimates induce a modification
of the eigenspace which is under control only for sufficiently separated eigenvalues. The use of a
random matrix rotation Θ can fix this problem with a quantifiable cost. The final algorithm is
described in Algorithm 1 below.

To state the result about this estimation method, we need to introduce the following quantity:

η2pΦM q :“ sup
y,y1

M
ÿ

a,b,c“1

pϕapy1qϕbpy2qϕcpy3q ´ ϕapy
1
1qϕbpy

1
2qϕcpy

1
3qq

2.

Note that in classical examples (Spline, Fourier, Wavelets) we have: ηpΦM q ď CηM
3
2 where

Cη ą 0 is a constant. To control our estimators performance, we use L2 norm for the densities
and the spectral norm for matrices. We shall denote fM,k the orthogonal projection of fk on
SpantΦMu and fM “ pfM,1, . . . , fM,Kq. As usual in nonparametric estimation, the risk for fk is
decomposed in a bias term ‖fk ´ fM,k‖2, which comes from the approximating properties of the
spaces SpantΦMu and decreases whenM increases, and in a variance term which comes from the
estimation, and increases whenM increases. A good choice ofM has to balance those two terms.
The aim of the following result is to bound the so-called variance term, and what is important
is to get a precise behavior of the upper bound with respect to both N and M .

Theorem 35 ([L18]). Assume (H). Then, there exist positive constant numbers C and N‹ such
that the following holds. Let x ą log 6, M large enough and N ě N‹ηpΦM q

2x. With probability
greater than 1´ 6e´x, up to label switching,

‖fM,k ´ f̂M,k‖2ď C
ηpΦM q
?
N

x , ‖Q´ Q̂‖ď C ηpΦM q
?
N

x .

Moreover, if M “MN is such that ηpΦMN
q “ op

?
Nq,

E
“

‖fMN ,k ´ f̂N,k‖
2
2

‰

“ O
´η2pΦMN

q

N

¯

, E
“

‖Q´ Q̂‖2
‰

“ O
´η2pΦMN

q

N

¯

.

Here, the expectations are taken on the observations and on the random unitary matrix drawn at
[Step 4] of the spectral algorithm.

Note on the proof:
The proof is entirely based on perturbation matrix theory: it is about controlling singular values,
eigenvalues, eigenvectors when a small perturbation is applied. �

According to this theorem, concerning the parametric part, if we chooseMN such as ηpΦMN
q “

plogNqδ for some positive δ, we get that

E
”

‖Q´ Q̂‖2
ı

“ O

ˆ

plogNq2δ

N

˙

which is quasi the parametric rate.
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Input: Y1:N “ pY1, . . . , YN q observation; Basis ΦM of the projection space;
Output: Estimation of the transition Q̂ (and its stationary distribution π̂) and the emission laws

f̂ .

[Step 1] Consider the following empirical estimators: for any a, b, c in t1, . . . ,Mu,

P̂1paq “ N´1
N
ÿ

s“1

ϕapYsq, P̂123pa, b, cq :“
1

N

N´2
ÿ

s“1

ϕapYsqϕbpYs`1qϕcpYs`2q

P̂13pa, cq :“
1

N

N´2
ÿ

s“1

ϕapYsqϕcpYs`2q, P̂12pa, bq “ N´1
N´1
ÿ

s“1

ϕapYsqϕbpYs`1q

[Step 2] Let Û be the M ˆK matrix of orthonormal right singular vectors of P̂13 corresponding to its
top K singular values.

[Step 3] Form the matrices:

@b P t1, . . . ,Mu, B̂pbq :“ pÛJP̂13Ûq
´1ÛJP̂123p. , b, . qÛ .

[Step 4] Set Θ a pK ˆKq random unitary matrix uniformly drawn and form the matrices:

@k P t1, . . . ,Ku, Ĉpkq :“
M
ÿ

b“1

pÛΘqpb, kqB̂pbq .

[Step 5] Compute R̂ a pK ˆKq unit Euclidean norm columns matrix that diagonalizes the matrix
Ĉp1q:

R̂´1Ĉp1qR̂ “ DiagrpΛ̂p1, 1q, . . . , Λ̂p1,Kqqs .

[Step 6] Set:
@k, k1 P t1, . . . ,Ku, Λ̂pk, k1q :“ pR̂´1ĈpkqR̂qpk1, k1q ,

and ÂM :“ ÛΘΛ̂.

[Step 7] Consider the emission laws estimator pf̂M,kq1ďkďK defined by:

@k P t1, . . . ,Ku, f̂M,k :“
M
ÿ

m“1

ÂM pm, kqϕm ,

[Step 8] Set
π̃ :“

`

ÛJÂM

˘´1
ÛJP̂1.

[Step 9] Consider the transition matrix estimator:

Q̂ :“ ΠTM

´

`

ÛJÂMDiagrπ̃s
˘´1

ÛJP̂12Û
`

ÂJMÛ
˘´1

¯

,

where ΠTM denotes the projection (with respect to the scalar product given by the Frobenius
norm) onto the convex set of transition matrices, and define π̂ as the stationary distribution
of Q̂.

Algorithm 1: Nonparametric Spectral Estimation
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Concerning the parametric part, the theorem states that the variance term is typically of order
M3{N . To get a control on the risk ‖fk ´ f̂M,k‖2 one has to make a trade-off with the bias term
‖fk ´ fM,k‖2, which has order OpM´αq where α is the minimal regularity of the emission laws.
Choosing M3`2α „ N , this leads to to the rate N´α{p2α`3q for the non parametric estimation.
This is similar to the rate of estimation of a density in dimension 3 with smoothness α. However
our target densities are in dimension 1, so that we should find estimators with variance M{N .
Here, the variance term of the spectral estimator has order M3{N because it comes from the
nonparametric estimation of a density of dimension 3: that of the distribution of pY1, Y2, Y3q.
To get a variance term of order M{N , we shall use the fact that the intrinsic complexity of the
statistical model for the distribution of pY1, Y2, Y3q is not that of a distribution on R3 but of K
distributions on R.

3.3.2 The penalized least-squares method

For f “ pf1, . . . , fKq densities on R and Q a transition matrix with stationary distribution π,
set gQ,f a possible density of pY1, Y2, Y3q

gQ,f px1, x2, x3q “

K
ÿ

k1,k2,k3“1

πpk1qQpk1, k2qQpk2, k3qfk1px1qfk2px2qfk3px3q.

We can estimate g “ gQ,f , which is the density of the observations, with standard methods in
density estimation. Next the following proposition is crucial. Unfortunately it is proved only for
K “ 2 hidden states. In such a case, f “ pf1, f2q, and

Q “

ˆ

1´ p‹ p‹

q‹ 1´ q‹

˙

for some p‹, q‹ in r0, 1s. We shall assume that the coefficients p‹ and q‹ verify 0 ă p‹ ă 1, 0 ă
q‹ ă 1, p‹ ‰ 1´ q‹.

Proposition 36 ([L18]). Let K be a compact subset of L2 such that if h “ ph1, h2q P K, then
ş

h1 “ 0 “
ş

h2. Let V be a compact neighborhood of Q such that, for all Q P V, Q verifies
0 ă p ă 1, 0 ă q ă 1, p ‰ 1 ´ q. Assume that f1 ‰ f2. Then there exists a positive constant c
such that

@h “ ph1, h2q P K2, @Q P V, }gQ,f`h ´ gQ,f }2 ě c}h}Q,

where

}h}Q :“

#

}h1}2 ` }h2}2 if Qp1, 2q ‰ Qp2, 1q,

minp}h1}2 ` }h2}2, }h1 ` f1 ´ f2}2 ` }h2 ` f2 ´ f1}2 if Qp1, 2q ‰ Qp2, 1q.

Then if we bound }gQ,f̂ ´ gQ,f }2, we shall bound (up to label switching) }f̂k ´ fk}2 for
k “ 1, 2. Now let us explain our estimation of g. Define the classical empirical contrast, for any
t : R3 Ñ R:

γN ptq “ }t}
2
2 ´

2

N

N´2
ÿ

s“1

t pYs, Ys`1, Ys`2q ,

which is an empirical counterpart of }t ´ g}22 ´ }g}
2
2 “ }t}

2
2 ´ 2xt, gy. We fix a compact subset

F of L2 such that for any f P F ,
ş

f “ 1 and }f}8 ď CF ,8 for some fixed CF ,8 ą 0. Define
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SpQ,Mq as the set of functions gQ,f such that

@k “ 1, . . . ,K, Dpamkq1ďmďM P RM , fk “
M
ÿ

m“1

amkϕm and fk P F .

Let now Q̂ be an estimator of Q (for instance the spectral estimator). For each M , we define
ĝM “ gQ̂,f̂

M as a minimizer of γN ptq for t P SpQ̂,Mq. To choose a value for M , we set a penalty
function penpMq and choose

M̂ “ argmin
M“1,...,N

tγN pĝM q ` penpMqu .

Then the estimator of g is ĝ “ ĝM̂ , and the estimator of f is the corresponding f̂ such that

ĝ “ gQ̂,f̂
M̂ i.e.

f̂ :“ f̂M̂ .

Using model selection machinery, we can prove an oracle inequality for the estimation of g,
that is: there exists κ‹ such that if

penpMq ě κ‹
M logM

N

then, up to label switching, with probability 1´ pe´ 1q´1e´x

}ĝ ´ g}22 ď 6 inf
M

!

}g ´ gQ,fM }22 ` penpMq
)

` C1
x

N
` C2

`

}Q´ Q̂}2 ` }π ´ π̂}22
˘

.

This gives

Theorem 37 ([L18]). Assume assumption (H) with K “ 2 hidden states. Then if penpMq ě
κ‹M logM

N , then up to label switching, for all N ě px_ x2qN‹ logN , with probability larger than
1´ 8e´x,

}f1 ´ f̂1}
2
2 ` }f2 ´ f̂2}

2
2 ď C

„

inf
M

 

}f1 ´ fM,1}
2
2 ` }f2 ´ fM,2}

2
2 ` penpMq

(

`
x

N

`‖Q´ Q̂‖2`‖π ´ π̂‖22
ı

.

Moreover, if Q and π are estimated with rate
a

plogNq{N , when N tends to infinity,

E
”

}f1 ´ f̂1}
2
2 ` }f2 ´ f̂2}

2
2

ı

“ O

ˆ

inf
M

 

}f1 ´ fM,1}
2 ` }f2 ´ fM,2}

2 ` penpMq
(

`
logN

N

˙

.

Note on the proof:
We use concentration inequalities for dependent variables of Paulin (2014). Here the model is
not a vector space and we have to make a fine work and to use bracketing entropy computations
to catch the true complexity (MK instead of M3). �

Thus, choosing penpMq “ κM logM{N for a large κ leads to the minimax asymptotic rate
of convergence up to logN . Indeed, standard results in approximation theory show that one
can upper bound the approximation error ‖fk ´ fM,k‖2 by OpM´αq where α ą 0 denotes a
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regularity parameter. Then the trade-off is obtained for M „ pN{ logNq1{p2α`1q, which leads to
the quasi-optimal rate pN{ logNq´α{p2α`1q for the nonparametric estimation when the minimal
smoothness of the emission densities is α. Notice that the algorithm automatically selects the
best M leading to this rate.

To implement the estimator, it remains to choose a value for κ in the penalty. In practice we
have used the slope heuristic (see Baudry et al., 2012).

3.3.3 Conclusion and illustration

To sum up, the spectral method have the great advantage to avoid initialization problems.
But it does not achieve the minimax rate: it over-estimates the intrinsic complexity of the
statistical model. By contrast, least squares estimator improves the quadratic risk at any fixed
approximation level, and using model selection with least squares estimators leads to minimax
rates. Then our final procedure is to initialize least squares minimization with spectral estimators.

We understand that a crucial step lies in computing least squares estimators ĝM . One may
struggle to compute ĝM since the function γN is non-convex. It follows that an acceptable
procedure must start from a good approximation of ĝM . This is done by the spectral method.
Then we propose a two steps estimation procedure that starts by the spectral estimator. The
latter seems to be a good candidate to initialize an iterative scheme that will converge towards
ĝM . Hence we compute ĝM for each M “ 1, . . . , N as follows

• First compute the spectral estimator. This is straightforward using the procedure described
in Algorithm 1. In particular, the spectral estimator gives an estimation Q̂, π̂ of the
transition matrix and its stationary distribution which is used to compute the least squares
contrast function.

• Use the spectral estimator of the emission densities as a starting point for “Covariance
Matrix Adaptation Evolution Strategy” (CMA-ES), see Hansen (2006). This iterative
algorithm may ultimately find a local/global minimum of the contrast function.

To illustrate the performance of our method, we present here some numerical experiments.
We consider the regular histogram basis for estimating K “ 2 emission laws given by beta laws
of parameters p2, 5q and p4, 3q from a single chain of size N “ 30, 000.
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Figure 18: Comparison of the variances of the spectral and the least squares estimators.
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A first numerical experiment, depicted in Figure 18, compares, for each M , the variances
(i.e. the L2-distance between the estimator and the orthogonal projection onto the subspace
generated by the basis ΦM ) obtained by the spectral method and the empirical least squares
method over 100 iterations on chains of length 40, 000. It consolidates the idea that the least
square method significantly improves the L2-distance to the best approximation of the emission
laws. Indeed, even for small values of M , one may see that the variance is divided by two in
Figure 18.
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Figure 19: Estimators of the emissions densities using the regular histogram basis
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Figure 20: Estimators of the emissions densities using the Fourier basis

One can see on Figures 19 and 20 that our method also qualitatively improves upon the
spectral method.
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[L9] Comte, F. and Lacour, C. (2010) Pointwise deconvolution with unknown error distri-
bution. C. R. Acad. Sci. Paris 348, 323–326

[L10] Comte, F. and Lacour, C. (2011) Data driven density estimation in presence of un-
known convolution operator. Journal of the Royal Statistical Society, Ser B. 73(4), 601–627

[L11] Akakpo, N. and Lacour, C. (2011) Inhomogeneous and anisotropic conditional density
estimation from dependent data. Electronic Journal of Statistics 5, 1618–1653

[L12] Comte, F. and Lacour, C. (2013) Anisotropic adaptive kernel deconvolution. Annales
de l’Institut Henri Poincaré Probab. Stat. 49(2), 569–609

85



[L13] Lacour, C. and Pham Ngoc, T. M. (2014) Goodness-of-fit test for noisy directional
data. Bernoulli 20(4), 2131–2168

[L14] Bec, M. and Lacour C. (2015) Adaptive kernel estimation of the Lévy density. Statis-
tical Inference for Stochastic Processes 18(3), 229–256

[L15] Bertin, K., Lacour, C. and Rivoirard, V. Adaptive pointwise estimation of condi-
tional density function. To appear in Annales de l’Institut Henri Poincaré Probab. Stat.

[L16] Chagny, G. and Lacour, C. (2015) Optimal adaptive estimation of the relative density.
TEST 24(3), 605–631

[L17] Lacour, C. and Massart, P. Minimal penalty for the Goldenshluger-Lepski method.
Submitted

[L18] De Castro, Y., Gassiat, E. and Lacour, C. Minimax adaptive estimation of non-
parametric hidden Markov models. Submitted

References

Abbaszadeh, M., Chesneau, C., and Doosti, H. (2013). Multiplicative censoring: estimation of a density
and its derivatives under the Lp-risk. REVSTAT, 11(3):255–276.

Adamczak, R. (2008). A tail inequality for suprema of unbounded empirical processes with applications
to Markov chains. Electron. J. Probab., 13(34):1000–1034.

Aït-Sahalia, Y. (2001). Transition densities for interest rate and other nonlinear diffusions [J. Finance 54
(1999), no. 4, 1361–1395]. In Quantitative analysis in financial markets, pages 1–34. World Sci. Publ.,
River Edge, NJ.

Akakpo, N. (2009). Estimation adaptative par sélection de partitions en rectangles dyadiques. PhD thesis,
Université Paris-Sud 11.

Akakpo, N. (2012). Adaptation to anisotropy and inhomogeneity via dyadic piecewise polynomial selec-
tion. Math. Methods Statist., 21(1):1–28.

Alexandrovich, G. and Holzmann, H. (2014). Nonparametric identification of hidden Markov models.
arXiv:1404.4210.

Allman, E. S., Matias, C., and Rhodes, J. A. (2009). Identifiability of parameters in latent structure
models with many observed variables. Ann. Statist., 37(6A):3099–3132.

Amann, H. (2000). Compact embeddings of vector-valued Sobolev and Besov spaces. Glas. Mat. Ser.
III, 35(55)(1):161–177. Dedicated to the memory of Branko Najman.

Anandkumar, A., Hsu, D., and Kakade, S. M. (2012). A method of moments for mixture models and
hidden Markov models. arXiv:1203.0683.

86



Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical models based on counting
processes. Springer Series in Statistics. Springer-Verlag, New York.

Athreya, K. B. and Atuncar, G. S. (1998). Kernel estimation for real-valued Markov chains. Sankhyā
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