Feuille de TD nº 4 : Loi du tout ou rien. Lois des grands nombres

Exercice 1.

- 1. Soit B et C deux ensembles. Pour tout $n \in \mathbb{N}$, on pose $A_{2n} = B$ et $A_{2n+1} = C$. Déterminer limsup A_n et liminf A_n .
- 2. Soit $(A_n)_{n\geq 1}$ une suite de parties d'un ensemble Ω . Montrer que $\mathbbm{1}_{\limsup A_n} = \limsup \mathbbm{1}_{A_n}$.

Exercice 2. Soit X_i , une suite de variables aléatoires indépendantes. Soit $S_n = \sum_{i=1}^n X_i$. Montrer que les événements suivants ont pour probabilité 0 ou 1 :

$$\{\lim_{n\to\infty} S_n = +\infty\}$$
 $\{\limsup_{n\to\infty} S_n = +\infty\}.$

Exercice 3. Événements échangeables et loi du 0-1 de Hewitt-Savage. Notons S l'ensemble des permutations de \mathbb{N}^* de support fini, c'est-a-dire les bijections σ de \mathbb{N}^* vérifiant $\sigma(n)=n$ pour tout n suffisamment grand. À une telle permutation $\sigma \in S$, on peut naturellement associer l'application $f_{\sigma}: \mathbb{R}^{\mathbb{N}^*} \to \mathbb{R}^{\mathbb{N}^*}$ définie par $f_{\sigma}((x_n)_{n\geq 1}) = (x_{\sigma(n)})_{n\geq 1}$ pour toute suite $(x_n)_{n>1} \in \mathbb{R}^{\mathbb{N}^*}$.

Considérons maintenant une suite $(X_n)_{n\geq 1}$ de variables aléatoires réelles. On rappelle que tout événement A qui appartient à la tribu engendrée par ces variables peut s'écrire sous la forme $A=\{(X_n)_{n\geq 1}\in B\}$, où B appartient à la tribu produit sur $\mathbb{R}^{\mathbb{N}^*}$ (engendrée par les cylindres). On dit qu'un tel événement A est échangeable si pour toute permutation $\sigma \in S$, on a $f_{\sigma}^{-1}(B)=B$, c'est-à-dire que pour toute suite $(x_n)_{n\geq 1}$ de réels,

$$(x_1, x_2, \dots, x_n, \dots) \in B \quad \iff \quad (x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}, \dots) \in B.$$

- 1. Montrer que tout événement appartenant à la tribu asymptotique est échangeable.
- 2. Montrer qu'un événement peut être échangeable sans nécessairement être asymptotique.
- 3. On suppose que les variables X_n sont indépendantes et identiquement distribuées. Montrer que tout événement échangeable A vérifie $\mathbb{P}(A) \in \{0,1\}$. C'est la loi du 0-1 de Hewitt-Savage.
- 4. En déduire que la loi du 0-1 de Hewitt-Savage généralise celle de Kolmogorov.

Exercice 4. Soit $(X_i)_{i\geq 1}$ une suite de variables aléatoires indépendantes et de même loi $\mathbb{P}(X_i=-1)=\mathbb{P}(X_i=1)=1/2$. On note $S_n=\sum_{i=1}^n X_i$. Soit

$$A = \{\limsup S_n = +\infty\}$$
 et $B = \{\liminf S_n = -\infty\}.$

- 1. Montrer que $\mathbb{P}(A) = 0$ ou 1.
- 2. Montrer que $\mathbb{P}(A) = \mathbb{P}(B)$.
- 3. Supposons que $\mathbb{P}(A) = 0$.
 - (a) Montrer que la suite $(S_n)_n$ est bornée p.s.
 - (b) Montrer que $\lim_{k\to\infty} \mathbb{P}[\sup_n |S_n| < k] = 1$.
 - (c) Calculer la loi de S_n .
 - (d) Montrer qu'il existe une constante C telle que pour tout n et tout k,

$$\mathbb{P}[|S_n| < k] \le \frac{Ck}{\sqrt{n}}.$$

- (e) En déduire que $\mathbb{P}(A) = 1$.
- 4. Calculer $\mathbb{P}(S_n = 0 \text{ infiniment souvent})$.

Exercice 5. Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires i.i.d. de loi la loi de X.

- 1. Soit a > 0. Montrer que X est intégrable ssi $\sum_{n>0} \mathbb{P}(|X| \ge an) < \infty$.
- 2. Montrer que si $\mathbb{E}(|X|) < \infty$, alors (X_n/n) converge p.s. vers 0.

- 3. Montrer que si $\mathbb{E}(|X|) = \infty$, alors, pour tout a positif, $\mathbb{P}(\limsup\{|X_n| \ge an\}) = 1$.
- 4. Soit $S_n = \sum_{i=1}^n X_i$. Déduire de la question précédente que si $\mathbb{E}(|X|) = \infty$, alors $\limsup_n |S_n/n| = +\infty$ p.s.

Exercice 6. Soit $(T_k)_{k\geq 2}$ une suite de variables aléatoires indépendantes définies sur un même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. On suppose que pour tout $k\geq 2$, T_k suit la loi exponentielle de paramètre $\ln(k)$.

- 1. Calculer $\mathbb{P}(T_k \geq 1)$, ainsi que $\mathbb{P}(T_k \geq 1 + \varepsilon)$ pour tout $\varepsilon > 0$.
- 2. En déduire, à l'aide du lemme de Borel-Cantelli, que

p.s.
$$\limsup_{k \to \infty} T_k = 1.$$

Exercice 7. Soit $(X_k)_{k\geq 0}$ une suite de v.a. indépendantes de loi gaussienne standard $\mathcal{N}(0,1)$. On pose $S_n = \sum_{i=1}^n X_i$.

- 1. Montrer que $\sqrt{2\pi}\mathbb{P}(X_0 > a) \sim a^{-1}\exp(-a^2/2)$ quand $a \to +\infty$.
- 2. Donner la loi de S_n/\sqrt{n} .
- 3. En déduire que si (a_n) est une suite de réels positifs telle que a_n/\sqrt{n} tende vers $+\infty$ alors S_n/a_n converge vers 0 en probabilité. Peut-on conclure pour la convergence p.s.? Montrer cependant que si $a_n = \sqrt{n} \log n$, alors S_n/a_n converge p.s. vers 0.
- 4. Montrer que $\limsup_{n} (2 \log n)^{-1/2} X_n = 1$ p.s. et $\limsup_{n} (2 \log n)^{-1/2} |X_n| = 1$ p.s.