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This erratum corrects Lemma 10 of the original paper, as well as all the proofs which rely on
this lemma in the sequel.

The new proof of Proposition 1

The result of Proposition 1 is true but the proof must be modified in the following way. We
replace Lemma 10 by:

Lemma 10. Under the assumptions of Proposition 1, and if (Xn) has an atom A,
λ∈Λm

E|S j (ϕλ)|
2

≤ r2
0 EA(τ 2)Dm .

Proof of Lemma 10. Using a convex inequality, we can write


λ∈Λm

E|S j (ϕλ)|
2

≤


λ∈Λm

Eµ

 τ(2)
i=τ+1

ϕλ(X i )


2

≤


λ∈Λm

Eµ


(τ (2) − τ)

τ(2)
i=τ+1

ϕ2
λ(X i )


.

Assumption M2 entails ∥


λ∈Λm
ϕλ∥∞ ≤ r2

0 Dm . Then


λ∈Λm

E|S j (ϕλ)|
2

≤ Eµ


(τ (2) − τ)

τ(2)
i=τ+1

r2
0 Dm


≤ r2

0 Eµ


(τ (2) − τ)2


Dm .
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To conclude, recall that by the Markov property,

Eµ


(τ (2) − τ)2


=


k


l>k

(l − k)2Pµ(τ = k, τ (2) = l)

=


k


l>k

(l − k)2P(Xk+1 ∉ A, . . . , Xl−1 ∉ A, Xl ∈ A|Xk ∈ A)

× Pµ(X1 ∉ A, . . . , Xk ∈ A)

=


k


l>k

(l − k)2PA(X1 ∉ A, . . . , Xl−k−1 ∉ A, Xl−k ∈ A)Pµ(τ = k)

=


k


j>0

j2PA(τ = j)Pµ(τ = k) = EA(τ 2). �

We can then give the bound
λ∈Λm

E(ν(3)
n (ϕλ)

2) ≤
r2

0 EA(τ 2)Dm

n
.

Finally E∥ fm − f̂m∥
2

≤ C Dm/n with C = 4[8r2
0 (Eµ(τ 2) + µ(A)EA(τ 4)) + r2

0 EA(τ 2)].

The new proof of Theorem 3

The result of Theorem 3 is true but the proof must be modified in the following way.
Proposition 12 must be replaced by:

Proposition 12. Let (Xn) be a Markov chain which satisfies A1–A5 and (Sm)m∈Mn be a
collection of models satisfying M1–M3. We suppose that (Xn) has an atom A. Let B(m, m′) =

{t ∈ Sm + Sm′ , ∥t∥ = 1} and

p(m, m′) = Kµ(A)EA(τ 2)r2
0

dim(Sm + Sm′)

n
(where K is a numerical constant). Then

m′∈Mn

E


sup

t∈B(m,m′)

ν2
n(t) − p(m, m′)


+

= O(n−1).

Remark 1. This gives a penalty in Theorem 3 of the form

pen(m) = Kµ(A)EA(τ 2)r2
0

Dm

n
, for some K > K0

with K0 a numerical constant. Note that this penalty is simpler than in the previous version of
this theorem. In particular, it does not depend on ∥ f ∥∞.

Remark 2. As can be seen in the proof, Assumption M1 can be relaxed; it is now sufficient to
assume that each Sm is a linear subspace of (L∞

∩ L2)([0, 1]) with dimension Dm ≤ n. This
entails an improvement on the smoothness assumption for Corollary 5: α > 0 is sufficient. In the
same way, M1′ can be relaxed and the condition for Corollary 8 is just α > 0.
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Proof of Proposition 12. The heart of the proof is to use Theorem 7 in [1] which is a
concentration inequality for Markov chains. In our case T1 = τ(1) = τ and T2 = τ(2) − τ(1).
Let us check that our assumptions allow us to use this theorem.

• We can easily prove that our Assumption A4 implies the Minorization Condition with m = 1
in [1]. Indeed, since


hdµ > 0, there exists C with measure µ(C) > 0 and δ > 0 such that

h is larger than δ on C . Then for all x in C and all events B, P(x, B) ≥ h(x)ν(B) ≥ δν(B).
Moreover, fixing x ∈ R, for n large enough, the ergodicity of the chain gives

|Pn(x, C) − µ(C)| ≤
µ(C)

2
,

which implies Pn(x, C) ≥ µ(C)/2 > 0.
• As noted at the very beginning of Section 3.5 of [1], the assumption of finiteness of the Orlicz

norm of T1 and T2, which is required to apply the theorem, is equivalent to the existence of a
number s > 1 such that

Eµ(sτ ) < ∞, Eν(sτ ) < ∞. (1)

Now, we use condition A5 of geometric ergodicity. Theorem 15.4.2 in [2] shows that there
exists a full absorbing set S such that S is geometrically regular, i.e. supx∈S Ex (sτ ) < ∞ for
some s > 1 (depending on A). Since S is full absorbing, and µ is the limit distribution of the
chain, µ(S) = 1. Moreover µ(C ∩ S) > 0, where C is the set introduced in the Minorization
Condition. So we can find x ∈ C ∩ S and δν(Sc) ≤ P(x, Sc) = 0. Thus ν(S) = 1 too. This
implies condition (1).

Now we write an integrated version of the concentration inequality. We define νn(t) =

n−1n
i=1[t (X i ) − ⟨t, f ⟩] where f is the stationary density of the chain and we consider a

countable class B of measurable functions t . Let a and H be such that

sup
t∈B

∥t − ⟨t, f ⟩∥∞ ≤ a, E


sup
t∈B

|νn(t)|


≤ H.

Let the variance term be

σ 2
= EA(τ )−1 sup

t∈B
EA

 τ
i=1

t (X i ) − ⟨t, f ⟩

2
 .

Then we prove the existence of a numerical constant c > 0 such that

E[sup
t∈B

|νn(t)|2 − cH2
]+ ≤ K1


1
n2 +

σ 2

n
e−K2

nH2

σ2 +
a2(log n)2

n2 e−K3
nH

a log n


(2)

where K1, K2, K3 depend on the chain. Indeed, we compute, for c = 8K 2,

E


sup
t∈B

|νn(t)|2 − cH2


+

=


∞

0
P


sup
t∈B

|νn(t)|2 ≥ cH2
+ x


dx

≤


∞

0
P


sup
t∈B

|νn(t)| ≥


c/2H +


x/2


dx ≤


∞

0
P


Z ≥


c/2EZ + n


x
2


dx

≤


∞

0
P


Z ≥ KEZ + KEZ + n


x
2


dx
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where Z = n supt∈B |νn(t)|. If x ≥ 2n−2, t = KEZ + n
√

x/2 ≥ 1, so we can apply Theorem 7.
Moreover 2n−2

0
P


Z ≥ KEZ + KEZ + n


x
2


dx ≤ 2n−2.

Thus

E


sup
t∈B

|νn(t)|2 − cH2


+

≤
2
n2 +


∞

0
K exp


−

1
K ′

min


[KEZ + n
√

x/2]
2

nσ 2 ,
KEZ + n

√
x/2

a log n


dx

≤
2
n2 +

1
K2

e−
K2(EZ)2

nσ2


∞

0
e−

K2nx
σ2 dx +

1
K3

e−
K3EZ
a log n


∞

0
e−

K3n
√

x
a log n dx

≤
2
n2 + K4

σ 2

n
e−

K2nH2

σ2 + K5
(a log n)2

n2 e−
K3nH
a log n .

This gives inequality (2). This result can be extended to a non-countable class B with classical
density arguments. So we apply it with B = B(m, m′). Moreover, the result of [1] is also true
when replacing EZ = nE(supt∈B |νn(t)|) by nE(supt∈B |ν′

n(t)|) with

ν′
n(t) =

1
n

⌊3n/EA(τ )⌋
j=1

S j (t)

(see the proof of Theorem 7, p. 1020). Thus (2) is also valid with H ≥ E

supt∈B |ν′

n(t)|

. It

remains to compute a, H and σ 2. We denote as D(m, m′) = max(Dm, Dm′) the dimension of
the space Sm + Sm′ (recall that the models are nested) and as (ϕλ)λ∈Λ(m,m′) an orthonormal basis
of Sm + Sm′ .

• Computation of a. If t ∈ Sm + Sm′ , ∥t∥∞ ≤ r0
√

D(m, m′)∥t∥. Then a = 2r0
√

D(m, m′).
• Computation of H2. Since any t ∈ B(m, m′) can be written as t =


λ∈Λ(m,m′) aλϕλ,

E


sup

t∈B(m,m′)

ν′
n(t)2


≤


λ∈Λ(m,m′)

E(ν′
n(ϕλ)

2)

≤


λ∈Λ(m,m′)

E

1
n

⌊3n/EA(τ )⌋
j=1

S j (ϕλ)

2 .

Recall that the S j (t) are independent, identically distributed and centered. Then, using (the
new) Lemma 10,

E


sup

t∈B(m,m′)

ν′
n(t)2


≤

⌊3n/EA(τ )⌋

n2 r2
0 EA(τ 2)D(m, m′).

Finally, since µ(A) = EA(τ )−1, we set H2
= C D(m, m′)/n with C = 3µ(A)EA(τ 2)r2

0 .
• Computation of σ 2. We use the following inequality, given in [2], Section 17.4.3:

µ(A)EA

 τ
i=1

t (X i ) − ⟨t, f ⟩

2
 = 2


(t − ⟨t, f ⟩)t̂dµ −


(t − ⟨t, f ⟩)2dµ
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where

t̂(x) := Ex


σA
i=0

t (X i ) − ⟨t, f ⟩


and σA = inf{n ≥ 0, Xn ∈ A}. Then, since µ(A) = EA(τ )−1,

σ 2
≤ sup

t∈B(m,m′)

2


(t − ⟨t, f ⟩)t̂dµ ≤ sup
t∈B(m,m′)

2


(t − ⟨t, f ⟩)2dµ


t̂2dµ

1/2

.

But

(t − ⟨t, f ⟩)2dµ ≤


t2 f ≤ ∥ f ∥∞∥t∥2 and

t̂2(x) ≤ Ex

 σA
i=0

t (X i ) − ⟨t, f ⟩

2
 ≤ 4∥t∥2

∞Ex ((σA + 1)2)

with Ex ((σA + 1)2) ≤ Ex ((τ + 1)2). Then

σ 2
≤ 4


Eµ((τ + 1)2)


∥ f ∥∞ sup

t∈B(m,m′)

∥t∥∞∥t∥

so that

σ 2
≤ 4


Eµ((τ + 1)2)


∥ f ∥∞r0


D(m, m′).

Now, we can use inequality (2): it implies the existence of positive constants K ′

1, K ′

2, K ′

3 such
that

E


sup
t∈B

|νn(t)|2 − cC D(m, m′)/n


+

≤ K ′

1


1
n2 +

√
D(m, m′)

n
e−K ′

2
√

D(m,m′)
+

D(m, m′)(log n)2

n2 e−K ′

3

√
n

log n


.

Using that D(m, m′) = max(Dm, D′
m) ≤ n, we obtain that


m′∈Mn

√
D(m, m′)e−K ′

2
√

D(m,m′)

and


m′∈Mn
D(m, m′)(log n)2n−1e−K ′

3

√
n

log n are bounded. Moreover |Mn|n−2
= O(n−1). Thus

m′∈Mn

E[sup
t∈B

|νn(t)|2 − cC D(m, m′)/n]+ = O(n−1). �

The new proof of Theorem 9

The result of Theorem 9 is true but the proof must be modified in the following way. Recall
that we define En = {∥ f − f̃ ∥∞ ≤ χ/2} and Ec

n as its complement. We have

E∥π − π̃∥
2

≤
8
χ2


E∥g − g̃∥

2
+ ∥π∥

2
∞E∥ f − f̃ ∥

2


+ (an + ∥π∥∞)2 P(Ec
n)

so it is sufficient to bound (an + ∥π∥∞)2 P(Ec
n). We have proven that, for n large enough,

P(Ec
n) ≤ P


∥ fm̂ − f̂m̂∥∞ >

χ

4


≤ P


∥ fm̂ − f̂m̂∥ >

χ

4r0
√

Dm̂


.
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But

∥ fm̂ − f̂m̂∥ = sup
t∈Sm̂ ,∥t∥≤1


t ( f̂m̂ − fm̂) = sup

t∈Sm̂ ,∥t∥≤1
νn(t).

Let Sm0 be the largest model with dimension Dm0 ≤ n1/4.

P(Ec
n) ≤ P


sup

t∈Sm̂ ,∥t∥≤1
νn(t)2 >

χ2

16r2
0 Dm̂


≤ P


sup

t∈Sm0 ,∥t∥≤1
νn(t)2 >

χ2

16r2
0 Dm0


.

As shown in the (new) proof of Proposition 12, our assumptions allow us to use Theorem 7 in [1].
Then, reasoning as in the proof of Proposition 12, we can show the existence of a numerical
constant c > 0 and constants depending on the chain K1, K2, K3 > 0 such that

P


sup

t∈Sm0 ,∥t∥≤1
νn(t)2

≥
c
2

H2


≤ K1


e−K2

√
Dm0 + e−K3

√
n/ log(n)


where H2

= 3µ(A)EA(τ 2)r2
0 Dm0/n. Now, for n large enough, since D2

m0
= o(n),

χ2

16r2
0 Dm0

≥
3cµ(A)EA(τ 2)r2

0
2

Dm0

n
.

Then

P(Ec
n) ≤ P


sup

t∈Sm0 ,∥t∥≤1
νn(t)2

≥
c
2

H2


≤ K1


e−K2

√
Dm0 + e−K3

√
n/ log(n)


so that (an + ∥π∥∞)2 P(Ec

n) = o(n−1). Note that it is sufficient to have Dm0 = ⌊n1/2−ϵ
⌋ to

obtain the result.
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