Devoir nº2

Exercice 1 - On se donne une fonction positive A, mesurable sur \mathbb{R}^2 . On suppose de plus qu'il existe $C_0 > 0$ tel que

$$\int_{\mathbb{R}} A(x,y) \, dy \leqslant C_0 \quad \text{ pour presque tout } x \in \mathbb{R},$$

$$\int_{\mathbb{R}} A(x,y) \, dx \leqslant C_0 \quad \text{ pour presque tout } y \in \mathbb{R}.$$

- 1. Montrer que si f est une fonction mesurable sur \mathbb{R} , la fonction $y \mapsto A(x,y)f(y)$ est mesurable pour presque tout $x \in \mathbb{R}$.
- 2. (a) Montrer que pour tout $f \in L^{\infty}(\mathbb{R})$, on définit une fonction Tf par

$$Tf(x) = \int_{\mathbb{R}} A(x, y) f(y) \, dy \tag{1}$$

pour presque tout $x \in \mathbb{R}$, et que $|Tf(x)| \leq C_0 ||f||_{\infty}$.

- (b) Montrer que pour tout $f \in L^{\infty}(\mathbb{R})$ et $g \in L^{1}(\mathbb{R})$, l'application $(x,y) \mapsto A(x,y)f(y)g(x)$ est intégrable.
- (c) En déduire que pour toute fonction $g \in L^1(\mathbb{R})$ et pour tout $f \in L^{\infty}(\mathbb{R})$, $x \mapsto Tf(x)g(x)$ est mesurable.
- (d) En déduire que T définit un opérateur linéaire borné de $L^{\infty}(\mathbb{R}) \to L^{\infty}(\mathbb{R})$, de norme $\|T\|_{\infty,\infty} \leq C_0$.
- 3. Montrer que si $f \in L^1(\mathbb{R})$, la fonction $y \mapsto A(x,y)f(y)$ est intégrable (en y) pour presque tout $x \in \mathbb{R}$, la formule (1) définit une fonction Tf dans $L^1(\mathbb{R})$, et $||Tf||_1 \leq C_0||f||_1$.
- 4. On se donne maintenant un exposant $p \in]1, +\infty[$ et une fonction f mesurable positive sur \mathbb{R} , et on définit $Tf(x) \in [0, +\infty]$ par (1).
 - (a) Dire pourquoi Tf est mesurable.
 - (b) Montrer que

$$Tf(x) \le C_0^{1-\frac{1}{p}} \left\{ \int_{\mathbb{D}} A(x,y) f(y)^p \, dy \right\}^{1/p}$$

- (c) En déduire que $||Tf||_p^p \leqslant C_0^p ||f||_p^p$.
- 5. On suppose maintenant que $f \in L^p(\mathbb{R})$ pour un $p \in]1, +\infty[$, mais sans supposer que f est à valeurs positives.
 - (a) Montrer que pour presque tout $x \in \mathbb{R}$, la fonction $y \mapsto A(x,y)f(y)$ est intégrable en y (ce qui permet de définit Tf(x) par (1), en décidant de poser Tf(x) = 0 sur l'ensemble négligeable restant).
 - (b) Soit q tel que 1/p + 1/q = 1. Montrer que pour toute fonction $g \in L^q(\mathbb{R})$ $x \mapsto Tf(x)g(x)$ est mesurable, et en déduire que que Tf est mesurable.

- (c) Montrer que $Tf \in L^p(\mathbb{R})$, et que $||Tf||_p \leq C_0||f||_p$.
- 6. On pose A(x,y)=u(x-y) avec $u\in L^1(\mathbb{R})$ et à valeurs positives. Montrer que A vérifie les conditions de l'énoncé et montrer que l'on retrouve la définition du produit de convolution $u*v\in L^p$ lorsque $v\in L^p$, et que $||u*v||_p \leq ||u||_1||v||_p$.

Exercice 2 -

Pour tout $n \ge 0$, on considère l'application

$$L_n: (C^0([-\pi,\pi]), \| \|_{\infty}) \longrightarrow \mathbb{R}$$

$$f \longmapsto \sum_{k=-n}^n c_k(f)$$

On note D_n le noyau de Dirichlet.

- 1. Rappeler les deux expressions du noyau de Dirichlet.
- 2. Montrer que L_n est une application linéaire continue.
- 3. Montrer que sa norme d'opérateur vaut $\frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt$.
- 4. Montrer que l'intégrale $\int_0^\infty |\sin(v)/v| dv$ diverge.
- 5. Montrer que $||L_n||$ tend vers $+\infty$ (on pourra utiliser le changement de variable $v=(n+\frac{1}{2})t$).
- 6. En utilisant le théorème de Banach-Steinhaus énoncé ci-dessous, montrer qu'il existe une fonction continue dont la série de Fourier diverge en 0.

Théorème de Banach-Steinhaus : Soit E un espace de Banach, F un espace vectoriel normé, et G une famille d'applications linéaires continues de E dans F. Ou bien $(\|\|\ell\|\|)_{\ell \in G}$ est bornée, ou bien il existe $x \in E$ tel que $\sup_{\ell \in G} \|\ell(x)\| = +\infty$.